Class ProbabilisticRankingReasoner
- java.lang.Object
-
- net.sf.tweety.arg.rankings.reasoner.ProbabilisticRankingReasoner
-
- All Implemented Interfaces:
ModelProvider<Argument,DungTheory,NumericalArgumentRanking>
public class ProbabilisticRankingReasoner extends java.lang.Object implements ModelProvider<Argument,DungTheory,NumericalArgumentRanking>
Implements a graded semantics reasoner based on the ideas from [Thimm, Cerutti, Rienstra; 2018].- Author:
- Matthias Thimm
-
-
Field Summary
Fields Modifier and Type Field Description static intNUMBER_OF_TRIALSNumber of trials for the used monte carlo search (this is a factor multiplied with the number of arguments of the actual framework)
-
Constructor Summary
Constructors Constructor Description ProbabilisticRankingReasoner(Semantics sem, Probability p, boolean exactInference)Creates a new reasoner.
-
Method Summary
Modifier and Type Method Description NumericalArgumentRankinggetModel(DungTheory aaf)Returns a single (dedicated) model of the given belief base.java.util.Collection<NumericalArgumentRanking>getModels(DungTheory bbase)Returns a characterizing model of the given belief base
-
-
-
Constructor Detail
-
ProbabilisticRankingReasoner
public ProbabilisticRankingReasoner(Semantics sem, Probability p, boolean exactInference)
Creates a new reasoner.- Parameters:
sem- The classical semantics used for evaluating subgraphsp- The probability used for all arguments to instantiate a probabilistic argumentation frameworkexactInference- Whether to use exact inference.
-
-
Method Detail
-
getModels
public java.util.Collection<NumericalArgumentRanking> getModels(DungTheory bbase)
Description copied from interface:ModelProviderReturns a characterizing model of the given belief base- Specified by:
getModelsin interfaceModelProvider<Argument,DungTheory,NumericalArgumentRanking>- Parameters:
bbase- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
public NumericalArgumentRanking getModel(DungTheory aaf)
Description copied from interface:ModelProviderReturns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Specified by:
getModelin interfaceModelProvider<Argument,DungTheory,NumericalArgumentRanking>- Parameters:
aaf- some belief base- Returns:
- a selected model of the belief base.
-
-