Class PropagationRankingReasoner
- java.lang.Object
-
- net.sf.tweety.arg.rankings.reasoner.AbstractRankingReasoner<LatticeArgumentRanking>
-
- net.sf.tweety.arg.rankings.reasoner.PropagationRankingReasoner
-
- All Implemented Interfaces:
ModelProvider<Argument,DungTheory,LatticeArgumentRanking>
,PostulateEvaluatable<Argument>
public class PropagationRankingReasoner extends AbstractRankingReasoner<LatticeArgumentRanking>
This class implements the argument ranking approach of [Delobelle. Ranking- based Semantics for Abstract Argumentation. Thesis, 2017] In this approach, initial values are assigned to arguments and then propagated into the graph. The paper describes three different ways of computing a ranking out of the propagation vector.- Author:
- Anna Gessler
-
-
Nested Class Summary
Nested Classes Modifier and Type Class Description static class
PropagationRankingReasoner.PropagationSemantics
The three propagation semantics: PROPAGATION1 ("Propa_epsilon") PROPAGATION2 ("Propa_{1+epsilon}") PROPAGATION3 ("Propa_{1->epsilon}")
-
Constructor Summary
Constructors Constructor Description PropagationRankingReasoner(boolean use_multiset)
Creates a new PropagationRankingReasoner with the given parameters.PropagationRankingReasoner(double attacked_arguments_influence, boolean use_multiset, PropagationRankingReasoner.PropagationSemantics semantics)
Creates a new PropagationRankingReasoner with the given parameters.
-
Method Summary
Modifier and Type Method Description LatticeArgumentRanking
getModel(DungTheory kb)
Returns a single (dedicated) model of the given belief base.java.util.Collection<LatticeArgumentRanking>
getModels(DungTheory bbase)
Returns a characterizing model of the given belief base
-
-
-
Constructor Detail
-
PropagationRankingReasoner
public PropagationRankingReasoner(boolean use_multiset)
Creates a new PropagationRankingReasoner with the given parameters.- Parameters:
use_multiset
- determines whether the multiset (M) of attackers/defenders of length is used instead of the set (S)
-
PropagationRankingReasoner
public PropagationRankingReasoner(double attacked_arguments_influence, boolean use_multiset, PropagationRankingReasoner.PropagationSemantics semantics)
Creates a new PropagationRankingReasoner with the given parameters.- Parameters:
attacked_arguments_influence
- the smaller this value is, the more important is the influence of the non-attacked arguments.use_multiset
- determines whether the multiset (M) of attackers/defenders of length is used instead of the set (S)semantics
- one of the three propagation semantics
-
-
Method Detail
-
getModels
public java.util.Collection<LatticeArgumentRanking> getModels(DungTheory bbase)
Description copied from interface:ModelProvider
Returns a characterizing model of the given belief base- Parameters:
bbase
- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
public LatticeArgumentRanking getModel(DungTheory kb)
Description copied from interface:ModelProvider
Returns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
kb
- some belief base- Returns:
- a selected model of the belief base.
-
-