Class ApproximateNaiveMlnReasoner
- java.lang.Object
-
- net.sf.tweety.logics.mln.reasoner.AbstractMlnReasoner
-
- net.sf.tweety.logics.mln.reasoner.ApproximateNaiveMlnReasoner
-
- All Implemented Interfaces:
QuantitativeReasoner<MarkovLogicNetwork,FolFormula>
,Reasoner<java.lang.Double,MarkovLogicNetwork,FolFormula>
public class ApproximateNaiveMlnReasoner extends AbstractMlnReasoner
This reasoner performs approximate reasoning with MLNs by considering only a subset of all Herbrand interpretations. This subset is chosen by first randomly selecting a set of Herbrand interpretations and then selecting the subset of this set with maximum weights.- Author:
- Matthias Thimm
-
-
Constructor Summary
Constructors Constructor Description ApproximateNaiveMlnReasoner(long maxNumberOfSelectedInterpretations, long maxNumberOfInterpretationsForModel)
Creates a new ApproximateNaiveMlnReasoner.
-
Method Summary
Modifier and Type Method Description java.util.Map<HerbrandInterpretation,java.lang.Double>
computeModel(MarkovLogicNetwork mln, FolSignature signature)
Computes the model of the given MLN wrt.-
Methods inherited from class net.sf.tweety.logics.mln.reasoner.AbstractMlnReasoner
query, query
-
-
-
-
Constructor Detail
-
ApproximateNaiveMlnReasoner
public ApproximateNaiveMlnReasoner(long maxNumberOfSelectedInterpretations, long maxNumberOfInterpretationsForModel)
Creates a new ApproximateNaiveMlnReasoner.- Parameters:
maxNumberOfSelectedInterpretations
- the maximum number of interpretations selected from the whole set of interpretations. Is -1 if all interpretations are to be selected.maxNumberOfInterpretationsForModel
- the maximum number of interpretations used for the model. Those interpretations are the subset of the interpretations selected with maximum weight. Is -1 if all interpretations are used for the model. It has to be maxNumberOfSelectedInterpretations >= maxNumberOfInterpretationsForModel.
-
-
Method Detail
-
computeModel
public java.util.Map<HerbrandInterpretation,java.lang.Double> computeModel(MarkovLogicNetwork mln, FolSignature signature)
Computes the model of the given MLN wrt. the optimization parameters- Parameters:
mln
- some mlnsignature
- some signature- Returns:
- the model of the given MLN wrt. the optimization parameters.
-
-