Uses of Class
org.tweetyproject.arg.dung.divisions.Division
Packages that use Division
-
Uses of Division in org.tweetyproject.arg.dung.divisions
Methods in org.tweetyproject.arg.dung.divisions that return types with arguments of type DivisionModifier and TypeMethodDescriptionstatic Collection<Division>
Division.getDivisions
(Collection<Extension<DungTheory>> exts, DungTheory aaf) Returns all divisions of all given extensions and the given aaf.static Collection<Division>
Division.getDivisions
(Extension<DungTheory> ext, DungTheory aaf) Returns all divisions of aaf that arise from the given extension.static Collection<Division>
Division.getStandardDivisions
(DungTheory theory) Returns the standard set of divisions of the given argumentation theory, i.e.Method parameters in org.tweetyproject.arg.dung.divisions with type arguments of type DivisionModifier and TypeMethodDescriptionstatic boolean
Division.isDisjoint
(Collection<Division> divisions, DungTheory theory, Semantics semantics) Checks whether the given set o divisions is disjoint wrt.static boolean
Division.isExhaustive
(Collection<Division> divisions, DungTheory theory, Semantics semantics) Checks whether the given set of divisions is exhaustive wrt. -
Uses of Division in org.tweetyproject.arg.prob.lotteries
Methods in org.tweetyproject.arg.prob.lotteries that return types with arguments of type DivisionModifier and TypeMethodDescriptionArgumentationLottery.getPossibleOutcomes()
Returns the set of possible outcomes.Methods in org.tweetyproject.arg.prob.lotteries with parameters of type DivisionModifier and TypeMethodDescriptionReturns the probability of the given outcome.SubgraphProbabilityFunction.getAcceptanceProbability
(Division d, Semantics semantics) Returns the probability of the given division being acceptable wrt.Constructor parameters in org.tweetyproject.arg.prob.lotteries with type arguments of type DivisionModifierConstructorDescriptionArgumentationLottery
(Collection<Division> divisions, SubgraphProbabilityFunction p, Semantics semantics) Creates a new lottery for the given set of divisions using the given probability function and semantics.