
Implementing KR Approaches with Tweety

Matthias Thimm

Institute for Web Science and Technologies, University of Koblenz-Landau

July 25, 2015

Matthias Thimm Tweety 1 / 137



Motivation 1/3

How to do research in (theoretical) KR:

1. Have a great idea

2. Formalize idea

3. Proof properties

4. Write paper

How to do research in practical CS:

1. Have a great idea

2. Implement idea

3. Do empirical evaluation

4. Write paper

Matthias Thimm Tweety 2 / 137



Motivation 2/3

I Even theoretical work can benefit from implementations
I allows other people to easily do examples
I proof-of-concept to show feasibility
I compare behavior with other approaches,

not just with toy examples

I KR2012: 20 of 71 (long and short) papers mentioned
implementations (≈ 28%, compare to e. g. Semantic Web
conferences with > 90%)

Matthias Thimm Tweety 3 / 137



Motivation 3/3

I What is the problem?
I approaches to complex to compute

I Not with todays computational resources (proof-of-concept!)

I “research is not about implementation”
I KR is meant to be about applications (mainly)

I lack of implementation skills
I No excuse

I no time for implementation
I No excuse

I Remark: DL research is a bit of an exception

Matthias Thimm Tweety 4 / 137



Tweety: A general implementation framework

Overview:
I Tweety currently consists of 32 Java libraries dealing with

different aspects of knowledge representation and artificial
intelligence

I Several libraries contain basic functionalities that can be used
for many different KR formalisms:

I Abstract classes for concepts such as Formula, Belief Base,
Interpretation, Reasoner,. . .

I Tools for dealing with sets, graphs, mathematical expressions,
mathematical optimization,. . .

I Command line interface
I Basic implementations of over 15 popular KR formalisms

Design Goals:
I Ease implementation effort for KR-related approaches
I Unified development paradigm across KR formalisms
I Open source, easy access (Maven), . . .

Matthias Thimm Tweety 5 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion
Matthias Thimm Tweety 6 / 137



Outline

1 Introduction
Purpose and Overview of Tweety
Related Works

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 7 / 137



Knowledge Representation and Tweety 1/3

I Tweety is a collection of Java libraries to aid researchers in
knowledge representation (mainly) in implementation work

I Definition “Knowledge Representation”:
Knowledge representation and reasoning (KR) is the field of
artificial intelligence (AI) dedicated to representing
information about the world in a form that a computer system
can utilize to solve complex tasks such as diagnosing a
medical condition. [Wikipedia]

Matthias Thimm Tweety 8 / 137



Knowledge Representation and Tweety 2/3

I Research in KR usually follows a certain template
1. Define KR formalism (usually some logic)

1.1 Syntax
1.2 Semantics

2. Define operations on KR formalism

2.1 Reasoning process (calculus, tableaux, . . . )
2.2 Change operations (revision, update, . . . )
2.3 . . .

3. Analyze, evaluate and compare our approach with others

3.1 Correctness, soundness
3.2 Computational complexity
3.3 Satisfaction of desirable properties (postulates)
3.4 Expressivity

I Evaluation is usually analytically, but experimental evaluation
helps for trial-and-error purposes

Matthias Thimm Tweety 9 / 137



Knowledge Representation and Tweety 3/3

I KR research is well-structured

I KR formalisms share the same structure
I This makes it easy for object-oriented implementation of lots

of formalisms
I Interfaces for common concepts (e. g. Formula or Reasoner)
I Specific implementations for each logic
I Modularity, refinement, composition of different aspects

I The use of Java and the object-oriented programming
paradigm (other than functional of logical paradigms) has
several advantages

1. Everyone knows Java (or: more people know Java than
Haskell)

2. Undergraduate students know Java as well
3. Everyone can run Java programs (easy setup, . . . )
4. insert your favorite Java argument

Matthias Thimm Tweety 10 / 137



Outline

1 Introduction
Purpose and Overview of Tweety
Related Works

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 11 / 137



Overview

Knowledge Representation concepts are mapped 1:1 to Java
classes/interfaces:

I net.sf.tweety.commons.Formula

I net.sf.tweety.commons.BeliefBase

I net.sf.tweety.commons.Interpretation

I net.sf.tweety.commons.EntailmentRelation

I net.sf.tweety.commons.Reasoner

Further important concepts:

I net.sf.tweety.commons.Signature

I net.sf.tweety.commons.Parser (reading files)

I net.sf.tweety.commons.Writer (writing files)

I Classes/interfaces for atoms, disjunctions, terms, etc.

Matthias Thimm Tweety 12 / 137



Formula

Example

PropositionalFormula f = new PlParser().parseFormula("!a && b");

PropositionalFormula g = new PlParser().parseFormula("b || c");

PropositionalFormula h = f.combineWithAnd(g).toDnf();

FolFormula i = new FolParser().parseFormula

("forall X: (forall Y: A(X,Y)");

Matthias Thimm Tweety 13 / 137



Interpretation

Example

PossibleWorld w = new PossibleWorld();

w.add(new Proposition("a"));

w.add(new Proposition("b"));

System.out.println( w.satisfies(f) );

Argument a = new Argument("A");

Labeling l = new Labeling();

l.put(a,ArgumentStatus.IN);

Extension e = new Extension(l.getArgumentOfStatus(ArgumentStatus.IN));

Matthias Thimm Tweety 14 / 137



Reasoner

Example

PlBeliefSet bs = new PlBeliefSet();

Proposition a = new Proposition("a");

Proposition b = new Proposition("b");

bs.add(a.complement().combineWithOr(b)); // "!a || b"

bs.add(a);

Reasoner r = new Sat4jReasoner(bs);

System.out.println( r.query(b) );

Matthias Thimm Tweety 15 / 137



More Code Examples: Belief Revision

PlBeliefSet bs = ...;

PropositionalFormula a = ...;

BaseRevisionOperator<PropositionalFormula> rev =

new LeviBaseRevisionOperator<PropositionalFormula>(

new KernelContractionOperator<PropositionalFormula>(

new RandomIncisionFunction<PropositionalFormula>(),

new ClassicalEntailment()),

new DefaultBaseExpansionOperator<PropositionalFormula>());

bs = new PlBeliefSet(rev.revise(bs, a));

Remark
Levi identity: K ∗ a = (K − ¬a) + a
Kernel contraction: K − α = K \ γ(K ⊥⊥ α)
Set of kernels (minimal proofs): K ⊥⊥ α
Incision function: γ

Matthias Thimm Tweety 16 / 137



More Code Examples: Mathematical Optimization

OptimizationProblem problem =

new OptimizationProblem(OptimizationProblem.MINIMIZE);

Variable x = new FloatVariable("x");

Variable y = new FloatVariable("y")

problem.add(new Equation(x.add(y),new FloatConstant(1)));

problem.setTargetFunction(new Power(x,2).add(new Power(y,2));

Solver solver = new OpenOptSolver();

System.out.println( solver.solve() );

Remark
Represented optimization problem:
min x2 + y 2

s.t. x + y = 1

Matthias Thimm Tweety 17 / 137



Outline

1 Introduction
Purpose and Overview of Tweety
Related Works

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 18 / 137



Related works 1/1

General purpose

I Tweety is a general-purpose collection of libraries addressing
various aspects of KR and AI in general

I To the best of my knowledge there is no other project with
the same broad scope

Other works
I BContractor

I General framework for belief revision/contraction
I https://bitbucket.org/renatolundberg/bcontractor

I PRISM
I Framework for modelling probabilistic systems
I http://www.prismmodelchecker.org

I Alchemy
I Reasoning engine for Markov Logic Networks
I http://alchemy.cs.washington.edu

Matthias Thimm Tweety 19 / 137

https://bitbucket.org/renatolundberg/bcontractor
http://www.prismmodelchecker.org
http://alchemy.cs.washington.edu


Related works 2/2

Other works
I SATEN

I General framework for belief revision/contraction
I no valid URL found

I KReator
I IDE for probabilistic relational approaches (SRL)
I http://kreator-ide.sourceforge.net

I COBA 2.0
I Belief change system
I http://www.cs.sfu.ca/~cl/software/COBA/coba2.html

I Protege
I Ontology editing
I http://protege.stanford.edu/

I General sources for open source software
I Machine Learning: http://mloss.org
I Argumentation: http:

//argumentationcompetition.org/2015/solvers.html
I SAT: http://satcompetition.org

Matthias Thimm Tweety 20 / 137

http://kreator-ide.sourceforge.net
http://www.cs.sfu.ca/~cl/software/COBA/coba2.html
http://protege.stanford.edu/
http://mloss.org
http://argumentationcompetition.org/2015/solvers.html
http://argumentationcompetition.org/2015/solvers.html
http://satcompetition.org


Outline

1 Introduction

2 Installation and Usage
Installation
Package overview
The implementation methodology behind Tweety

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 21 / 137



Outline

1 Introduction

2 Installation and Usage
Installation
Package overview
The implementation methodology behind Tweety

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 22 / 137



Installation in 30 seconds 1/4

Terminal-only, all Linux derivatives/Mac OS X (below for Ubuntu),
Java SDK 8 should already be installed

1. Install Maven
$ sudo apt -get install maven

2. Create empty Maven project

$ mvn archetype:generate

-DgroupId=mytweety.mytweetyapp

-DartifactId=mytweetyapp

-DarchetypeArtifactId=

maven -archetype -quickstart

-DinteractiveMode=false

3. Add Tweety as dependency

$ cd mytweetyapp

$ nano pom.xml

Matthias Thimm Tweety 23 / 137



Installation in 30 seconds 2/4

3. Add Tweety as dependency

<project ...>

...

<dependencies >

...

<dependency >

<groupId >net.sf.tweety </groupId >

<artifactId >tweety -full</artifactId >

<version >1.3</version >

</dependency >

...

</dependencies >

</project >

Matthias Thimm Tweety 24 / 137



Installation in 30 seconds 3/4

4. Configure Maven for automatic dependency inclusion
(recommended for beginners)

<project ...>

...

<build>

<plugins >

<plugin >

<artifactId >maven -assembly -plugin </artifactId >

<version >2.5.3</version >

<configuration >

<descriptorRefs >

<descriptorRef >jar -with -dependencies </descriptorRef >

</descriptorRefs >

</configuration >

<executions >

<execution >

<id>make -assembly </id>

<phase>package </phase>

<goals>

<goal>single </goal>

</goals>

</execution >

</executions >

</plugin >

</plugins >

</build >

</project >

Matthias Thimm Tweety 25 / 137



Installation in 30 seconds 4/4

5. Write code
$ nano src/main/java/mytweety/

mytweetyapp/App.java

package mytweety.mytweetyapp;

import net.sf.tweety.logics.pl.syntax .*;

public class App{

public static void main( String [] args ) {

PropositionalFormula helloWorld =

new Proposition("HelloWorld");

System.out.println(helloWorld );

}

}

6. Compile and run

$ mvn package

$ java -cp

target/mytweetyapp -1.0- SNAPSHOT -jar -with -dependencies.jar

mytweety.mytweetyapp.App

HelloWorld

Matthias Thimm Tweety 26 / 137



Installation in Eclipse 1/10

Prerequisites:

I Eclipse (http://eclipse.org)

I m2e plugin for Eclipse (http://eclipse.org/m2e/)

1. Create new project

Matthias Thimm Tweety 27 / 137

http://eclipse.org
http://eclipse.org/m2e/


Installation in Eclipse 2/10

2. Select Maven Project

Matthias Thimm Tweety 28 / 137



Installation in Eclipse 3/10

3. Configure Maven Project 1/2

Matthias Thimm Tweety 29 / 137



Installation in Eclipse 4/10

4. Configure Maven Project 2/2

Matthias Thimm Tweety 30 / 137



Installation in Eclipse 5/10

5. Overview on new project

Matthias Thimm Tweety 31 / 137



Installation in Eclipse 6/10

6. Add Tweety dependency to pom.xml

Matthias Thimm Tweety 32 / 137



Installation in Eclipse 7/10

7. Create new source file

Matthias Thimm Tweety 33 / 137



Installation in Eclipse 8/10

7. Create new source file

Matthias Thimm Tweety 34 / 137



Installation in Eclipse 9/10

8. Write code

Matthias Thimm Tweety 35 / 137



Installation in Eclipse 10/10

9. Run

Matthias Thimm Tweety 36 / 137



Using the snapshot versions of Tweety 1/8

I The previous instructions always used the latest Maven
version of Tweety (updated about twice a year)

I In order to use the most up-to-date version we recommend
using the snapshot versions from SVN with Eclipse

1. Retrieve current version from SVN
$ svn checkout svn://svn.code.sf.net/p/tweety/code/ tweety -code

Matthias Thimm Tweety 37 / 137



Using the snapshot versions of Tweety 2/8

2. Import into Eclipse

Matthias Thimm Tweety 38 / 137



Using the snapshot versions of Tweety 3/8

3. Search for checked-out local copy

Matthias Thimm Tweety 39 / 137



Using the snapshot versions of Tweety 4/8

4. Select “projects” folder of SVN local copy

Matthias Thimm Tweety 40 / 137



Using the snapshot versions of Tweety 5/8

5. Configure options

Matthias Thimm Tweety 41 / 137



Using the snapshot versions of Tweety 6/8

6. All Tweety libraries in one working set

Matthias Thimm Tweety 42 / 137



Using the snapshot versions of Tweety 7/8

7. Add libraries to other projects in Eclipse

Matthias Thimm Tweety 43 / 137



Using the snapshot versions of Tweety 8/8

8. Update regularly to get the most recent version

$ svn up

Matthias Thimm Tweety 44 / 137



Contributing to Tweety

I Tweety is a collaborative research project
I Contribute with

I bugfixes to existing libraries
I new implementations/alternatives to extend existing libraries
I completely new libraries

I Just register at SourceForge and provide your username to
Matthias Thimm (thimm@mthimm.de)

I Write-access to the repository will be enabled afterwards

Matthias Thimm Tweety 45 / 137



Outline

1 Introduction

2 Installation and Usage
Installation
Package overview
The implementation methodology behind Tweety

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 46 / 137



Libraries 1/4

General Libraries:

I Tweety Commons (net.sf.tweety.commons)

I Command Line Interface (net.sf.tweety.cli)

I Plugin (net.sf.tweety.plugin)

I Math (net.sf.tweety.math)

I Graphs (net.sf.tweety.graphs)

I Web (net.sf.tweety.web)

Matthias Thimm Tweety 47 / 137



Libraries 2/4

Logic Libraries

I Logic Commons (net.sf.tweety.logics.commons)

I Propositional Logic (net.sf.tweety.logics.pl)

I First-Order Logic (net.sf.tweety.logics.fol)

I Conditional Logic (net.sf.tweety.logics.cl)

I Relational Conditional Logic (net.sf.tweety.logics.rcl)

I Probabilistic Conditional Logic
(net.sf.tweety.logics.pcl)

I Relational Probabilistic Conditional Logic
(net.sf.tweety.logics.rpcl)

I Markov Logic (net.sf.tweety.logics.ml)

I Epistemic Logic (net.sf.tweety.logics.el)

I Description Logic (net.sf.tweety.logics.pl)

I Logic Translators (net.sf.tweety.logics.translators)

Matthias Thimm Tweety 48 / 137



Libraries 3/4

Logic Programming Libraries

I Answer Set Programming (net.sf.tweety.lp.asp)

I Dynamics in Answer Set Programming
(net.sf.tweety.lp.asp.beliefdynamics)

I Nested Logic Programming (net.sf.tweety.lp.nlp)

Argumentation Libraries:

I Abstract Argumentation (net.sf.tweety.arg.dung)

I Deductive Argumentation (net.sf.tweety.arg.deductive)

I Structured Argumentation Frameworks
(net.sf.tweety.arg.saf)

I Defeasible Logic Programming (net.sf.tweety.arg.delp)

I Logic Programming Argumentation
(net.sf.tweety.arg.lp)

I Probabilistic Argumentation (net.sf.tweety.arg.prob)

Matthias Thimm Tweety 49 / 137



Libraries 4/4

Agent Libraries:

I Agents (net.sf.tweety.agents)

I Dialogues (net.sf.tweety.agents.dialogues)

Other Libraries:

I Action and Change (net.sf.tweety.action)

I Belief Dynamics (net.sf.tweety.beliefdynamics)

I Machine Learning (net.sf.tweety.machinelearning)

I Preferences (net.sf.tweety.preferences)

Matthias Thimm Tweety 50 / 137



Outline

1 Introduction

2 Installation and Usage
Installation
Package overview
The implementation methodology behind Tweety

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 51 / 137



Implementation methodology 1/3

I Tweety strictly follows the usually recommended guidelines for
object-oriented programming

1. Represent as much as possible using interfaces and abstraction
2. Reuse of libraries in other libraries (e. g. Probabilistic

Conditional Logic extends structures from Conditional Logic
which extends structures from Propositional Logic which
implements abstract interfaces for basic notions)

3. Bundle important common functionalities in abstract classes
4. Usage of recommended design patterns (factory, observer,

template method, . . . )

I Tweety follows the KR approach to research

1. 1:1 mapping of logical constructs as Java classes (syntax,
semantics, . . . )

2. Logic-like composition of operators in programming code
3. Pseudo-code in papers can be easily transformed into actually

working code

Matthias Thimm Tweety 52 / 137



Implementation methodology 2/3

I Rigorous modular integration of general methods
I One of the first libraries was about probabilistic conditional

logic; one task involves using mathematical optimization to
determine a probability function

I A general library about optimization was introduced with
classes such as OptimizationProblem, Equation, . . .

I Several bridges to existing solvers were implemented (each just
a couple of lines of code)

I Library can now be used for any KR formalism; addition of
new solvers straightforward

I Tweety provides lots of general applicable mathematical and
logical background to easily implement even sophisticated KR
formalisms

Matthias Thimm Tweety 53 / 137



Implementation methodology 3/3

I Tweety provides propriety implementations of many KR
languages (starting from propositional logic)

I Tweety provides some propriety implementations of
well-known algorithms

I More importantly: existing and stable implementations of
algorithms can easily be connected via bridges

I Example: SAT-solvers are usually highly sophisticated
I Tweety contains several bridges to existing SAT solvers;

methods to convert other problems to common SAT formats
(e. g. DIMACS)

I New solvers can be added with a couple of lines of code

Matthias Thimm Tweety 54 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion
Matthias Thimm Tweety 55 / 137



Basic classes 1/3

I In order to implement a new KR formalism, usually the
following interfaces have to be implemented

1. Formula: what constitutes the syntactic structures of the
formalism?

2. BeliefBase: how are formulas organized in a belief base (as a
set, ordered list, . . . )?

3. Interpretation: how is the syntax interpreted?
4. Reasoner: how do formulas and belief bases entail further

formulas?

I Further interfaces/abstract classes can help

1. Signature: what are the basic ingredients of the syntax?
2. RelationalFormula: formulas based on first-order logic

(contains utilities for grounding, variable substitution, . . . )
3. Conjunctable, Disjunctable: for formulas that can be

combined using e. g. conjunction and disjunction
4. . . .

Matthias Thimm Tweety 56 / 137



Basic classes 2/3

The basic classes/interfaces are “very” abstract at the top level

public interface Formula{

public Signature getSignature ();

}

public interface BeliefBase {

public Signature getSignature ();

public String toString ();

}

public interface Interpretation {

public boolean satisfies(Formula formula );

public boolean satisfies

(Collection <? extends Formula > formulas );

public boolean satisfies(BeliefBase beliefBase );

}

Matthias Thimm Tweety 57 / 137



Basic classes 3/3

public abstract class Reasoner {

private BeliefBase beliefBase;

public Reasoner(BeliefBase beliefBase ){

this.beliefBase = beliefBase;

}

public abstract Answer query(Formula query);

public BeliefBase getKnowledgBase (){

return this.beliefBase;

}

}

public abstract class Signature {

public abstract boolean isSubSignature

(Signature other );

public abstract boolean isOverlappingSignature

(Signature other );

public abstract void addSignature

(Signature other );

}
Matthias Thimm Tweety 58 / 137



Parser and Writer 1/2

Parser and Writer should be provided to loading and saving
knowledge bases to the disk:

public abstract class Parser <T extends BeliefBase > {

public T parseBeliefBaseFromFile(String filename)

{ ... }

public T parseBeliefBase(String text) { ... }

public abstract T parseBeliefBase(Reader reader );

public Formula parseFormulaFromFile

(String filename) { ... }

public Formula parseFormula(String text) { ... }

public abstract Formula parseFormula

(Reader reader );

}

Matthias Thimm Tweety 59 / 137



Parser and Writer 2/2

public abstract class Writer {

private Object obj;

public Writer(Object obj) { ... }

public void setObject(Object obj) { ... }

public Object getObject () { ... }

public abstract String writeToString ();

public void writeToFile(String filename) { ... }

}

Matthias Thimm Tweety 60 / 137



Plugins, CLI, REST API

I If you implemented all classes mentioned before properly, you
can create a Tweety plugin and get a command line interface
for free

I Builds on JSPF (Java Simple Plugin Framework)
I Encapsulates language-independent functionalities in a general

CLI

I Also in development: a general Tweety REST API
I net.sf.tweety.web
I Case study on inconsistency management

http://tweetyproject.org/w/incmes

Matthias Thimm Tweety 61 / 137

http://tweetyproject.org/w/incmes


Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic
Using and reasoning with propositional logic
Using SAT solvers
Exercises

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 62 / 137



Propositional Logic - Recap 1/4

Definition
A propositional signature At is a finite set of identifiers, called
atoms or propositions.

Definition
Let At be a propositional signature. The propositional language
L(At) for At is the minimal set L satisfying

1. At ⊆ L,

2. >,⊥∈ L (tautology and contradiction), and

3. for every φ, ψ ∈ L it holds that

3.1 φ ∧ ψ ∈ L (conjunction),
3.2 φ ∨ ψ ∈ L (disjunction), and
3.3 ¬φ ∈ L (negation).

Matthias Thimm Tweety 63 / 137



Propositional Logic - Recap 2/4

Definition
Let At be a propositional signature. A propositional interpretation
I on At is a function

I : At→ {true, false} .

Let Int(At) denote the set of all propositional interpretations for At.

An interpretation can also be written as a complete conjunction
enumerating all literals that are true in the given interpretation.

Example

Consider a propositional signature At = {a, b, c}. The
interpretation I1 of At given by

I1(a) = true I1(b) = false I1(c) = true

can be fully described by the complete conjunction abc.

Matthias Thimm Tweety 64 / 137



Propositional Logic - Recap 3/4

I An interpretation I satisfies an atom a ∈ At, denoted by
I |=P a, if and only if I (a) = true.

I An interpretation I falsifies an atom a ∈ At, denoted by
I 6|=P a, if and only if I (a) = false.

The satisfaction relation |=P is extended to arbitrary sentences
recursively as follows. Let φ, ψ ∈ L(At) be some sentences.

I I |=P φ ∨ ψ if and only if I |=P φ or I |=P ψ

I I |=P φ ∧ ψ if and only if I |=P φ and I |=P ψ

I I |=P ¬φ if and only if I 6|=P φ

Furthermore, for every interpretation I it holds that I |=P > and
I 6|=P⊥.

Matthias Thimm Tweety 65 / 137



Propositional Logic - Recap 4/4

I I is a propositional model of a sentence φ ∈ L(At) if and only
if I |=P φ.

I Let ModP(Φ) ⊆ Int(At) denote the set of all models of
Φ ⊆ L(At).

I A set of formulas Φ2 semantically follows from a set of
formulas Φ1, denoted by Φ1 |=P Φ2, if and only if
ModP(Φ1) ⊆ ModP(Φ2).

Matthias Thimm Tweety 66 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic
Using and reasoning with propositional logic
Using SAT solvers
Exercises

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 67 / 137



Propositional Logic in Tweety

Every concept is mapped 1:1 in Tweety

I public abstract class PropositionalFormula

I public class Proposition extends PropositionalFormula

I public class Negation extends PropositionalFormula

I public class Conjunction extends PropositionalFormula

I . . .

I public class PropositionalSignature extends

SetSignature<Proposition>

I public class PlBeliefSet extends

BeliefSet<PropositionalFormula>

I public class PossibleWorld extends

InterpretationSet<Proposition>

Matthias Thimm Tweety 68 / 137



PropositionalFormula (Excerpt)

public abstract class PropositionalFormula

implements ClassicalFormula {

PropositionalSignature getSignature () { ... }

abstract Set <Proposition > getAtoms ();

abstract Set <PropositionalFormula > getLiterals ();

Conjunction combineWithAnd(Conjuctable f) { ... }

Disjunction combineWithOr(Disjunctable f) { ... }

abstract PropositionalFormula

collapseAssociativeFormulas ();

abstract PropositionalFormula trim() { ... }

abstract PropositionalFormula toNnf ();

abstract Conjunction toCnf ();

Set <PossibleWorld > getModels () { ... }

PropositionalFormula toDnf () { ... }

ClassicalFormula complement () { ... }

}

Matthias Thimm Tweety 69 / 137



Constructing formulas

Proposition p = new Proposition("p");

Proposition q = new Proposition("q");

PropositionalFormula f1 = new Conjunction(p,q);

PropositionalFormula f2 = p.combineWithAnd(q);

PropositionalFormula f3 =

p.combineWithAnd(new Negation(q)). combineWithOr(q);

Matthias Thimm Tweety 70 / 137



Parse formulas

Tweety file format for propositional logic

p

p && q

r || !s

p && (!s || !q)

PlParser parser = new PlParser ();

PlBeliefSet f3 = parser.parseBeliefBaseFromFile(file);

Matthias Thimm Tweety 71 / 137



Interpretations: Possible Worlds

Semantics is mapped 1:1 in possible worlds:

public class PossibleWorld extends ... {

private Set <Proposition > truePropositions;

public boolean satisfies(Formula formula ){

...

if(formula instanceof Contradiction)

return false;

if(formula instanceof Tautology)

return true;

if(formula instanceof Proposition)

return this.contains(formula );

if(formula instanceof Negation)

return !this.satisfies ((( Negation)formula)

.getFormula ());

if(formula instanceof Conjunction ){

Conjunction c = (Conjunction) formula;

for(PropositionalFormula f : c)

if(!this.satisfies(f))

return false;

return true; } ... }

Matthias Thimm Tweety 72 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic
Using and reasoning with propositional logic
Using SAT solvers
Exercises

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 73 / 137



Reasoning with Propositional Logic

I Having a semantical characterization of propositional logic
within the programming environment is good for verification
purposes

I For practical reasoning, however, one should use existing SAT
solvers

I Tweety has built-in support for various SAT solvers
I Sat4J: Java-based SAT solver (no additional libraries or

external executables needed)
I Lingeling (external binary compiled for system needed)
I basically any SAT solver with a command line interface

compatible with the SAT competition requirements

I Basic approach: an inference problem is reduced to a
consistency problem (note that Φ |=P α if and only if
Φ ∪ {¬α} is inconsistent)

Matthias Thimm Tweety 74 / 137



SAT solvers in Tweety 1/2

SatSolver mySolver = new Sat4jSolver ();

PlBeliefSet kb = ...

System.out.println(mySolver.isConsistent(kb));

Matthias Thimm Tweety 75 / 137



SAT solvers in Tweety 2/2

SAT solvers are managed with static methods in SatSolver

SatSolver.setDefaultSolver

(new LingelingSolver("path/to/binary"));

Now Lingeling is used as the default solver for everything

PlBeliefSet kb = ...

PropositionalFormula queryFormula = ...

SatReasoner reasoner = new SatReasoner(kb);

System.out.println(reasoner.query(queryFormula ));

Matthias Thimm Tweety 76 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic
Using and reasoning with propositional logic
Using SAT solvers
Exercises

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 77 / 137



Exercises

E1. Create and print propositional formulas

Create representations of the following propositional formulas:

1. a ∨ (b ∧ c)

2. a ∧ ¬a
3. ¬(¬¬a ∧ ¬b)

4. a ∨ b ∨ c ∨ ¬d
Afterwards print each formula on the terminal.

Matthias Thimm Tweety 78 / 137



Exercises

E2. Formula manipulation and CNF

1. Create a disjunction of the four formulas from the previous
exercise.

2. Print the formula on the terminal

3. Convert the formula into CNF

4. Print the converted formula on the terminal

Matthias Thimm Tweety 79 / 137



Exercises

E3. Satisfiability

Create a representation of the following propositional formula using
PlParser:

(b ∨ ¬d) ∧ (¬a ∨ (b ∧ ¬(c ∨ d) ∧ e) ∨ (a ∧ ¬c))

1. Print the formula on the terminal

2. Is this formula satisfiable? Try out Sat4jSolver

3. Print a model of the formula

Matthias Thimm Tweety 80 / 137



Exercises

E4. Interpretations

1. Create a propositional signature with 4 propositions
{A0,A1,A2,A3}

2. Use PossibleWorldIterator to print all interpretations of
the corresponding propositional language

3. Create a representation of the formula A1 ∨ (A2 ∧ ¬A3)

4. Use PossibleWorldIterator to print all interpretations that
satisfy the formula from 3.

Matthias Thimm Tweety 81 / 137



Exercises

E5. Sampling belief bases

Try out sampling belief bases using CnfSampler

1. Create a propositional signature with 10 propositions

2. Create a CnfSampler for this signature with a variable ratio
of 0.3

3. Sample 10 belief bases with 5–10 formulas each

Matthias Thimm Tweety 82 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs
Mathematical tools in Tweety
Constraint Satisfaction and Optimization problems
Using general graph structures
Exercises

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 83 / 137



Mathematics and Graphs

I Many approaches in KR and AI in general rely on
mathematical formalisms

I This includes
I Set theory, set operations
I mathematical terms, aggregation of mathematical terms
I constraint satisfaction, optimization problems
I matrices, vectors
I probability theory

I The package net.sf.tweet.math provides helpful utilities
for dealing with mathematical subproblems

I The package net.sf.tweet.graphs provides methods for
working with graphs

Matthias Thimm Tweety 84 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs
Mathematical tools in Tweety
Constraint Satisfaction and Optimization problems
Using general graph structures
Exercises

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 85 / 137



Working with mathematical terms

I Strictly speaking, the mathematical language of terms,
equations, . . . is also a KR language

I Tweety uses the same methodology for representing
mathematical terms as for its KR approaches

I The syntax of mathematical terms:
I Term as abstract ancestor for all terms; IntegerConstant as

atomic element
I Product, Fraction, Sum as connectors
I Representations of functions: Logarithm, Exp, Root, . . .

I Equation as the basic formula (consisting of two terms)

Matthias Thimm Tweety 86 / 137



Example

The equation

X + 2Y = 3Z − 5

can be represented via

Variable x = new IntegerVariable("X");

Variable y = new IntegerVariable("Y");

Variable z = new IntegerVariable("Z");

Constant two = new IntegerConstant (2);

Constant three = new IntegerConstant (3);

Constant five = new IntegerConstant (5);

Equation eq = new Equation(

x.add(two.mult(y)),

three.mult(z). minus(five)

);

Matthias Thimm Tweety 87 / 137



Working with mathematical terms (cont’d)

I Tweety provides several tools for working with terms
I Automatic derivation (3X 2 → 6X )
I Checking whether a function is continous
I Bringing terms in normal form

I Representations of vectors and matrices

I Matrix multiplication and other algebraic operations

I One important aspect are constraint satisfaction and
optimization problems

Matthias Thimm Tweety 88 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs
Mathematical tools in Tweety
Constraint Satisfaction and Optimization problems
Using general graph structures
Exercises

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 89 / 137



KR and optimization problems

I Many reasoning approaches which involve quantitative
uncertainty (probabilistic logics, fuzzy logics, etc.) or search
problems involve optimization problems

I Compute a probability function with maximum entropy
I Find a shortest path
I Paraconsistent reasoning: minimize number of propositions

receiving a paraconsistent truth value

I The package net.sf.tweety.math.opt provides general
classes for modelling optimization problems (and constraint
satisfaction problems) and bridges to methods solving those

Matthias Thimm Tweety 90 / 137



Optimization Problems

An optimization problem P is of the form

Maximize F (X1, . . . ,Xn)
subject to H1(X1, . . . ,Xn) ≤ B1

. . .
Hm(X1, . . . ,Xn) ≤ Bm

(or “Minimize”, “=”, “≥”, . . . )

I The class OptimizationProblem captures this definition

I Similarly, ConstraintSatisfactionProblem for constraint
satisfaction problems

I The package net.sf.tweety.math.opt.solver contains
implementations and bridges to several solvers

Matthias Thimm Tweety 91 / 137



Solving Optimization Problems - Example

// minimize X+Y subject to X-Y >= 10 and Y>= 0

Solver.setDefaultLinearSolver(new ApacheCommonsSimplex ());

OptimizationProblem problem =

new OptimizationProblem(OptimizationProblem.MINIMIZE );

FloatVariable x = new FloatVariable("X");

FloatVariable y = new FloatVariable("Y");

problem.add(new Inequation(x.minus(y),

new FloatConstant (10), Inequation.GREATER_EQUAL ));

problem.add(new Inequation(y,new FloatConstant (0),

Inequation.GREATER_EQUAL ));

problem.setTargetFunction(x.add(y));

Map <Variable ,Term > solution =

Solver.getDefaultLinearSolver (). solve(problem );

Matthias Thimm Tweety 92 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs
Mathematical tools in Tweety
Constraint Satisfaction and Optimization problems
Using general graph structures
Exercises

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 93 / 137



Graphs in Tweety

I The package net.sf.tweety.graphs contains
representations of graphs

I General interface: interface Graph<T extends Node>

extends Iterable<T>

I Representations of directed, undirected, and weighted edges

I Methods for determining Eigenvalues, strongly connected
components, and others

I is currently being heavily extended (bridges to graph
databases, layout components, etc.)

Matthias Thimm Tweety 94 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs
Mathematical tools in Tweety
Constraint Satisfaction and Optimization problems
Using general graph structures
Exercises

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 95 / 137



Exercises

E6. Create and print mathematical statements

Create representations of the following mathematical statements:

1. 3 ∗ X + 2X 2 = 44

2. logX + X
log Y > 0

3. eX−Y ≤ 3
√
X

4. |X ∗ Y |+ max{0,X} < 47

Afterwards print each statement on the terminal.

Matthias Thimm Tweety 96 / 137



Exercises

E7. Working with mathematical statements

Create a representation of the following mathematical function
(use float terms):

−9X + 2X 2 +
2

3
X 3

1. Print the term on the terminal

2. Print the derivation of the term wrt. X , why does it look like
that?

3. Use the simplify method to simplify the derivation and print
it again

4. Determine and print a root of the computed derivation (use
NewtonRootFinder with starting point X = 0)

Matthias Thimm Tweety 97 / 137



Exercises

E8. Linear optimization

Solve the following linear optimization problem:

Maximize 3X + 2Y
subject to 2X + 4Y ≤ 200

Y ≥ 10

1. Create a representation of the above problem and print it on
the terminal

2. Install the GLPK solver (e. g. via sudo apt-get install

glpk)

3. Register GLPK as the default linear solver in Tweety (do not
forget to provide correct path name and folder for temporary
files)

4. Solve the above problem with the default linear solver, print
the solution (variable assignments) and value of the solution

Matthias Thimm Tweety 98 / 137



Exercises

E9. Graphs

Consider the following directed graph:

A

B

D

C

E

F

G

1. Create a representation of the above graph and print it on the
terminal (use SimpleNode for vertices)

2. What are the strongly connected components of this graph?

3. Print the adjacency matrix of the graph

4. What are the Eigenvalues of the graph?

Matthias Thimm Tweety 99 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation
Introduction to Computational Argumentation
Computational Argumentation in Tweety
Case Study: Strategic Argumentation
Exercises

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 100 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation
Introduction to Computational Argumentation
Computational Argumentation in Tweety
Case Study: Strategic Argumentation
Exercises

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 101 / 137



Abstract Argumentation

Definition (Abstract Argumentation Framework)

An abstract argumentation framework AF is a tuple
AF = (Arg,→) with arguments Arg and an attack relation
→⊆ Arg × Arg [Dung,1995].

An extension E is a set E ⊆ Arg and is supposed to model a
“plausible and jointly acceptable” set of arguments.

Definition
E is admissible iff

1. for all A,B ∈ E it is not the case that A → B,

2. for all A ∈ E , if B → A then there is C ∈ E with C → B
and it is complete if additionally

3. every argument C that is defended by E , belongs to E

Matthias Thimm Tweety 102 / 137



Semantics

Definition

I E is grounded if and only if E is minimal (wrt. set inclusion).

I E is preferred if and only if E is maximal (wrt. set inclusion).

I E is stable if and only if E attacks all arguments Arg \ E .

I . . .

Matthias Thimm Tweety 103 / 137



Example

A1 A2 A3

A4

A5

E = {A1,A5} is admissible, complete, preferred, and stable.

E ′ = ∅ is admissible, complete, and grounded.

Matthias Thimm Tweety 104 / 137



Deductive Argumentation

Approach for structured argumentation: Deductive Argumentation
[Besnard, Hunter; 2001].

Let Φ be a set of (propositional) sentences.

Definition
An argument A for a sentence α is a tuple A = 〈Ψ, α〉 with
Ψ ⊆ Φ that satisfies

1. Ψ 0⊥
2. Ψ ` α, and

3. there is no Ψ′ ( Ψ with Ψ′ ` α
For an argument A = 〈Ψ, α〉 we say that α is the claim of A and
Ψ is the support of A.

Matthias Thimm Tweety 105 / 137



Undercuts and argument trees

Definition
An argument A = 〈Ψ, α〉 is an undercut for an argument
B = 〈Φ, β〉 if and only if α = ¬(φ1 ∧ . . . ∧ φn) for some
φ1, . . . , φn ⊆ Φ.

Definition
An argument tree τΦ(α) for α in Φ is a tree where the nodes are
arguments and that satisfies

1. the root is an argument for α in Φ,

2. for every path [〈Φ1, α1〉, . . . , 〈Φn, αn〉] in τΦ(α) it holds that
Φn * Φ1 ∪ . . . ∪ Φn−1, and

3. the children B1, . . . ,Bm of a node A consist of all undercuts
for A that obey 2.).

Let T (At) be the set of all argument trees.

Remark: “undercut” in item 3.) should be “canonical undercut”

Matthias Thimm Tweety 106 / 137



Argument structures

Definition
The argument structure ΓΦ(α) for α with respect to Φ is the tuple
ΓΦ(α) = (P, C) such that P is the set of argument trees for α in Φ
and C is the set of arguments trees for ¬α in Φ.

Definition
A categorizer γ is a function γ : T (At)→ R.

Definition
An accumulator κ is a function κ : PP(R)×PP(R)→ R
(PP(S) is the set of multi-sets of S).

Matthias Thimm Tweety 107 / 137



Acceptance

Φ accepts a sentence α with respect to a categorizer γ and an
accumulator κ, denoted by Φ |∼ κ,γα if and and only if

κ(γ(ΓΦ(α))) > 0

Matthias Thimm Tweety 108 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation
Introduction to Computational Argumentation
Computational Argumentation in Tweety
Case Study: Strategic Argumentation
Exercises

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 109 / 137



Packages

I Abstract Argumentation (net.sf.tweety.arg.dung)

I Deductive Argumentation (net.sf.tweety.arg.deductive)

I Structured Argumentation Frameworks
(net.sf.tweety.arg.saf)

I Defeasible Logic Programming (net.sf.tweety.arg.delp)

I Logic Programming Argumentation
(net.sf.tweety.arg.lp)

I Probabilistic Argumentation (net.sf.tweety.arg.prob)

Also relevant:

I Agent Dialogues (net.sf.tweety.agents.dialogues)

Matthias Thimm Tweety 110 / 137



Abstract Argumentation 1/2

Creating and manipulating argumentation frameworks:

DungTheory at = new DungTheory ();

Argument a = new Argument("a");

Argument b = new Argument("b");

at.add(a);

at.add(b);

Attack att1 = new Attack(a,b);

at.add(att1);

Parsing files in APX format:

DungTheory at = new ApxParser ()

.parseBeliefBaseFromFile(file);

Matthias Thimm Tweety 111 / 137



Abstract Argumentation 2/2

Computing extensions:

DungTheory at = ...

CompleteReasoner r = new CompleteReasoner(at);

System.out.println(r.getExtensions ());

I Supported semantics: complete, grounded, preferred, stable,
semi-stable, CF2, stage, ideal

I Standard reasoner returns objects of type Extension (sets of
arguments)

I Conversion to Labeling also possible

I Most reasoners are based on semantical definitions (some on
SAT solvers and some exploit SCC structure)

I Planned: add bridge to support command line interface
solvers from probo (the interface standard of the
argumentation competition)

Matthias Thimm Tweety 112 / 137



Deductive Argumentation

Creating and manipulating knowledge bases (as in propositional
logic):

DeductiveKnowledgeBase kb = new DeductiveKnowledgeBase ();

PlParser parser = new PlParser ();

kb.add( (PropositionalFormula)

parser.parseFormula("(a || b) && !c && d")));

Getting arguments:

System.out.println(kb.getDeductiveArguments(someFormula ));

Reasoning:

CompilationReasoner reasoner = new CompilationReasoner

(kb, new ClassicalCategorizer (),

new SimpleAccumulator ());

System.out.println(reasoner.query(someFormula)

.getAnswerBoolean ());

Matthias Thimm Tweety 113 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation
Introduction to Computational Argumentation
Computational Argumentation in Tweety
Case Study: Strategic Argumentation
Exercises

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 114 / 137



Strategic Argumentation

. . .

A1

A1

A3

A3

nil
A7

A7

A2

A2

A4
A5

A4A5

A6

A6

nilnil nil

Matthias Thimm Tweety 115 / 137



Empirical Evaluation with Tweety

I Implemented three different opponent models

I Implemented simulation environment for agent dialogues

I Agent generators
I Game generators

I Generated randomly 5000
argumentation frameworks

I Measured and compared
performance of different
models

[Rienstra, Thimm, Oren. Opponent Models with Uncertainty for Strategic Argumentation. IJCAI 2013]

T1 T2 T3

10

20

30

10.98

18.2
20.82

Type of belief state

W
in

s
%

Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with ar-
gumentation. [6] describes two systems which concern them-

1http://tinyurl.com/tweety-opp

selves with the likelihood that an agent knows a specific argu-
ment, and we can view the possible argument AFs that can be
induced from these likelihoods as possible models of agent
knowledge. [15] investigates probabilistic interpretations of
abstract argumentation and relationships to approaches for
probabilistic reasoning. Furthermore, [8] investigated strate-
gies in such a probabilistic setting but concerned themselves
with monologues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [10], which aims to minimise the cost
of moves, with no concern to the opponent’s knowledge, and
without looking more than one step ahead when reasoning.
Such a strategy can easily be encoded by our approach. By
assigning probabilities to arguments, [14] constructed a game
tree allowing dialogue participants to maximise the likelihood
of some argument being accepted or rejected. The probabili-
ties in that system arose from a priori knowledge, and no con-
sideration was given to the possibility of an opponent model.

[12; 13] consider a very different aspect of strategy, at-
tempting to identify situations which are strategy-proof, that
is, when full revelation of arguments is the best course of
action to follow. Similarly, [16] extends that work to struc-
tured AFs and also proposes some simple dominant strate-
gies for other specific situations. This can be contrasted with
our work, where e. g. withholding information can result in a
better outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work

We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [5] has high-
lighted the need for strategies when structured argumentation
is used. Since the work presented here can easily be extended
to this domain, we are in the process of adapting our algo-
rithms to deal with dialogues built on top of structured argu-
mentation.

Figure 4: Performance of the simple (T1), uncertain (T2),
and extended (T3) belief states in comparison (with Binomial
proportion confidence intervals)

6 Implementation and Evaluation
We implemented the three different opponent models using
Java in the Tweety library for artificial intelligence1. Our AF
allows for the automatic generation of random abstract argu-
mentation theories and simulates a dialogue between multi-
ple agents. We used this AF to conduct experiments with our
models and to evaluate their effectiveness in practice.

For evaluating performance we generated a random ab-
stract argumentation theory with 10 arguments, ensuring that
the argument under consideration is in its grounded exten-
sion, i. e. under perfect information the proponent should win
the dialogue. However, from these 10 arguments only 50 %
are known by the proponent but 90 % by the opponent. We
used a proponent without opponent model and generated an
extended belief state for the opponent (with maximum recur-
sion depth 3). From this extended belief state we derived an
uncertain belief state by simply removing the virtual argu-
ments. From this uncertain belief state we derived a simple
belief state by sampling a nested opponent model from the
probability function in the uncertain belief state. For each
belief state we simulated a dialogue against the same oppo-
nent and counted the number of wins. We repeated the ex-
periment 5000 times, with Figure 4 showing our results. As
seen, increasing the complexity of the belief state yields bet-
ter overall performance. In particular, note that the difference
between the performances of the simple and uncertain belief
states is larger than between uncertain and extended belief
states. However, this observation is highly depended on the
actual number of virtual arguments used (which was around
30 % of all arguments in this experiment) and is different for
larger values (due to space restrictions we do not report on
the results of those experiments).

7 Related Work
Recently, interest has arisen in combining probability with
argumentation. [Hunter, 2012] describes two systems which

1http://tinyurl.com/tweety-opp

concern themselves with the likelihood that an agent knows a
specific argument, and we can view the possible argument
AFs that can be induced from these likelihoods as possi-
ble models of agent knowledge. [Thimm, 2012] investigates
probabilistic interpretations of abstract argumentation and re-
lationships to approaches for probabilistic reasoning. Fur-
thermore, [Oren et al., 2012] investigated strategies in such
a probabilistic setting but concerned themselves with mono-
logues rather than dialogues.

Our work concerns itself with identifying the arguments an
agent should advance at any point in a dialogue. Other work
in this vein includes [Oren et al., 2006], which aims to min-
imise the cost of moves, with no concern to the opponent’s
knowledge, and without looking more than one step ahead
when reasoning. Such a strategy can easily be encoded by
our approach. By assigning probabilities to arguments, [Roth
et al., 2007] constructed a game tree allowing dialogue par-
ticipants to maximise the likelihood of some argument being
accepted or rejected. The probabilities in that system arose
from a priori knowledge, and no consideration was given to
the possibility of an opponent model.

[Rahwan and Larson, 2008; Rahwan et al., 2009] consider
a very different aspect of strategy, attempting to identify sit-
uations which are strategy-proof, that is, when full revelation
of arguments is the best course of action to follow. Simi-
larly, [Thimm and Garcia, 2010] extends that work to struc-
tured AFs and also proposes some simple dominant strategies
for other specific situations. This can be contrasted with our
work, where e. g. withholding information can result in a bet-
ter outcome for the agent than revealing all its arguments.

8 Conclusions and Future Work
We proposed three structures for modeling an opponents be-
lief in strategic argumentation. Our simple model uses a re-
cursive structure to hold the beliefs an agent has on the other
agent’s beliefs. We extended this model to incorporate quan-
titative uncertainty on the actual opponent model and quali-
tative uncertainty on the set of believed arguments. All our
models have been implemented and we tested their perfor-
mance in a series of experiments. As expected, increasing
the complexity of the opponent modelling structure resulted
in improved outcomes for the agent.

We consider several avenues of future work. First, agents
using our strategies attempt to maximise their outcome, with
no consideration for risk. We seek to extend our work to
cater for this notion by introducing second order probabili-
ties into our system. We also intend to investigate whether
virtual arguments are equivalent to a simpler system wherein
no attacks between virtual arguments can exist. Furthermore,
while it is difficult to obtain large scale argument graphs ob-
tained from real world domains, we hope to validate our ap-
proach over such corpora. Finally, while our results (for clar-
ity of presentation) focus on abstract argument, [Hadjiniko-
lis et al., 2012] has highlighted the need for strategies when
structured argumentation is used. Since the work presented
here can easily be extended to this domain, we are in the pro-
cess of adapting our algorithms to deal with dialogues built
on top of structured argumentation.

Matthias Thimm Tweety 116 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation
Introduction to Computational Argumentation
Computational Argumentation in Tweety
Case Study: Strategic Argumentation
Exercises

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion

Matthias Thimm Tweety 117 / 137



Exercises

E10. Abstract Argumentation Frameworks

Consider the following abstract argumentation framework:

A

B

C D

E

1. Create a representation of the above graph as an abstract
argumentation framework

2. Compute and print out the complete, preferred, and stable
extensions of the framework (do not forget to set your default
SAT-solver)

Matthias Thimm Tweety 118 / 137



Exercises

E11. Abstract Argumentation Frameworks

1. Create an instance of EnumeratingDungTheoryGenerator
and generate the first 100 abstract argumentation frameworks

2. Let us define the stable extension number as the number of
stable extensions of an argumentation framework divided by
the sum of the number of its arguments and attacks; print out
this number for the 100 frameworks from above

3. Determine the average stable extension number for the
considered frameworks (add up the numbers and divide by
100); increase the number of considered frameworks, does this
number converge? To where and why?

Matthias Thimm Tweety 119 / 137



Exercises

E12. Deductive Argumentation

Consider the following propositional knowledge base K:

K = {a,¬a ∨ b,¬b, b ∧ ¬c , c ∧ a}

1. Create a representation of the above knowledge as a deductive
knowledge base

2. Compute and print out all deductive arguments for a ∨ b

3. Is the formula a entailed by the knowledge base? Use
CompilationReasoner with ClassicalCategorizer and
SimpleAccumulator.

Matthias Thimm Tweety 120 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement
Introduction to Inconsistency Measurement
Inconsistency Measures in Tweety
Exercises

8 Summary and Conclusion

Matthias Thimm Tweety 121 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement
Introduction to Inconsistency Measurement
Inconsistency Measures in Tweety
Exercises

8 Summary and Conclusion

Matthias Thimm Tweety 122 / 137



Inconsistency Measurement 1/3

Compare the following propositional knowledge bases

K1 = {a, b ∨ c ,¬a ∧ ¬b, d} K2 = {a,¬a, b,¬b}

I both K1 and K2 are inconsistent

I K2 seems more inconsistent than K1

I the field of Inconsistency Measurement is about quantifying
inconsistency

Definition
A knowledge base K is a finite set of propositional formulas.
Let K(At) be the set of all knowledge bases of signature At.

Definition
An inconsistency measure I is a function I : K→ [0,∞).

Matthias Thimm Tweety 123 / 137



Inconsistency Measurement 2/3

Definition
A set M ⊆ K is called minimal inconsistent subset (MI) of K if
M |=⊥ and there is no M ′ ⊂ M with M ′ |=⊥. Let MI(K) be the
set of all MIs of K.

Definition
A formula α ∈ K is called free formula of K if there is no
M ∈ MI(K) with α ∈ M. Let Free(K) denote the set of all free
formulas of K.

Matthias Thimm Tweety 124 / 137



Inconsistency Measurement 3/3

Definition
A basic inconsistency measure is a function I : K→ [0,∞) that
satisfies the following three conditions:

1. I(K) = 0 if and only if K is consistent,

2. if K ⊆ K′ then I(K) ≤ I(K′), and

3. for all α ∈ Free(K) we have I(K) = I(K \ {α}).

Example

Define IMI(K) = |MI(K)|
Then we have

IMI({a,¬a, c}) = 1

IMI({a, b,¬a ∧ ¬b}) = 2

Matthias Thimm Tweety 125 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement
Introduction to Inconsistency Measurement
Inconsistency Measures in Tweety
Exercises

8 Summary and Conclusion

Matthias Thimm Tweety 126 / 137



Inconsistency Measures in Tweety 1/2

General interface:

interface InconsistencyMeasure <T extends BeliefBase > {

public Double inconsistencyMeasure(T beliefBase );

}

Available implementations: IMI, Id , IMIC , Iη, Ic , Imc , Ip, Ihs ,
IΣ

dalal, Imax
dalal, Ihit

dalal, IDf
, IPm , Imv , Inc , . . .

I Tool needed for many measures: MUS enumerators
I Available implementations of PlMusEnumerator:

I MimusMusEnumerator
I MarcoMusEnumerator
I NaiveMusEnumerator

Matthias Thimm Tweety 127 / 137



Inconsistency Measures in Tweety 2/2

Usage:

PlMusEnumerator.setDefaultEnumerator(

new NaiveMusEnumerator <PropositionalFormula >

(new Sat4jSolver ()));

MiInconsistencyMeasure <PropositionalFormula > miInc =

new MiInconsistencyMeasure <PropositionalFormula >

(PlMusEnumerator.getDefaultEnumerator ());

PlBeliefSet kb = ...

System.out.println(miInc.inconsistencyMeasure(kb));

Matthias Thimm Tweety 128 / 137



Web interface

Matthias Thimm Tweety 129 / 137



REST API

Matthias Thimm Tweety 130 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement
Introduction to Inconsistency Measurement
Inconsistency Measures in Tweety
Exercises

8 Summary and Conclusion

Matthias Thimm Tweety 131 / 137



Exercises

E13. MUSes and MCSes

Consider the following propositional knowledge base K:

K = {a, b,¬a ∨ ¬b,¬a}

1. Create a representation of the above knowledge base as a
propositional belief set.

2. Configure NaiveMusEnumerator with Sat4jSolver as your
default MUS enumerator for propositional logic

3. Use your default MUS enumerator for propositional logic to
determine all MUSes and MCSes of K

Matthias Thimm Tweety 132 / 137



Exercises

E14. Inconsistency Measures

Consider again the following propositional knowledge base K:

K = {a, b,¬a ∨ ¬b,¬a}

1. The packages net.sf.tweety.logics.commons.analysis

and net.sf.tweety.logics.pl.analysis contain several
inconsistency measures; select three of those and compute
their inconsistency value of K.

Matthias Thimm Tweety 133 / 137



Outline

1 Introduction

2 Installation and Usage

3 Basics: Important classes and concepts

4 Basics: Propositional Logic

5 Basics: Mathematics and Graphs

6 Advanced topics: Computational Argumentation

7 Advanced topics: Inconsistency Measurement

8 Summary and Conclusion
Matthias Thimm Tweety 134 / 137



KR/AI and Tweety

I Research in KR usually follows a certain template
1. Define KR formalism (usually some logic)

1.1 Syntax
1.2 Semantics

2. Define operations on KR formalism

2.1 Reasoning process (calculus, tableaux, . . . )
2.2 Change operations (revision, update, . . . )
2.3 . . .

3. Analyze, evaluate and compare our approach with others

3.1 Correctness, soundness
3.2 Computational complexity
3.3 Satisfaction of desirable properties (postulates)
3.4 Expressivity

I Evaluation is usually analytically, but experimental evaluation
helps for trial-and-error purposes

Matthias Thimm Tweety 135 / 137



Contributing to Tweety

I Tweety is a collaborative research project
I Contribute with

I bugfixes to existing libraries
I new implementations/alternatives to extend existing libraries
I completely new libraries

I Just register at SourceForge and provide your username to
Matthias Thimm (thimm@mthimm.de)

I Write-access to the repository will be enabled afterwards

Matthias Thimm Tweety 136 / 137



Final Remarks and further work

Tweety is . . .

I . . . a multi-purpose framework for Knowledge Representation

I . . . Open Source and licensed under GNU GPL v3.0

I . . . being constantly improved

Current Work:

I Plugin architecture

I Command line interface

I Description logic library

Future Work:

I Web interface

I More KR formalisms

Thank you for your attention

Join and participate: http://tweetyproject.org

Matthias Thimm Tweety 137 / 137


	Introduction
	Purpose and Overview of Tweety
	Related Works

	Installation and Usage
	Installation
	Package overview
	The implementation methodology behind Tweety

	Basics: Important classes and concepts
	Basics: Propositional Logic
	Using and reasoning with propositional logic
	Using SAT solvers
	Exercises

	Basics: Mathematics and Graphs
	Mathematical tools in Tweety
	Constraint Satisfaction and Optimization problems
	Using general graph structures
	Exercises

	Advanced topics: Computational Argumentation
	Introduction to Computational Argumentation 
	Computational Argumentation in Tweety
	Case Study: Strategic Argumentation
	Exercises

	Advanced topics: Inconsistency Measurement
	Introduction to Inconsistency Measurement
	Inconsistency Measures in Tweety
	Exercises

	Summary and Conclusion

