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1 Preliminaries

Let At be some �xed propositional signature, i. e., a (possibly in�nite) set of propositions, and let L(At) be
the corresponding propositional language constructed using the usual connectives ∧ (and), ∨ (or), and ¬
(negation). A knowledge base K is a �nite set of formulas K ⊆ L(At). Let K be the set of all knowledge
bases. IfX is a formula or a set of formulas we write At(X) to denote the set of propositions appearing inX.
Semantics to a propositional language is given by interpretations and an interpretation ω on At is a function
ω : At → {true, false}. Let Ω(At) denote the set of all interpretations for At. An interpretation ω satis�es (or
is a model of) a proposition a ∈ At, denoted by ω |= a, if and only if ω(a) = true. The satisfaction relation |=
is extended to formulas in the usual way.
As an abbreviationwe sometimes identify an interpretationωwith its complete conjunction, i. e., if a1, . . . ,

an ∈ At are those propositions that are assigned true by ω and an+1, . . . , am ∈ At are those propositions that
are assigned false by ω we identify ω by a1 . . . anan+1 . . . am (or any permutation of this). For example, the
interpretation ω1 on {a, b, c} with ω(a) = ω(c) = true and ω(b) = false is abbreviated by abc.
For Φ ⊆ L(At) we also de�ne ω |= Φ if and only if ω |= φ for every φ ∈ Φ. De�ne furthermore the set of

modelsMod(X) = {ω ∈ Ω(At) | ω |= X} for every formula or set of formulasX. IfMod(X) = ∅we also write
X |=⊥ and say thatX is inconsistent.

2 Inconsistency Measures

Let R∞≥0 be the set of non-negative real values including∞. Inconsistency measures are functions I : K →
R∞≥0 that aim at assessing the severity of the inconsistency in a knowledge base K. The basic idea is that the
larger the inconsistency in K the larger the value I(K) and I(K) = 0 if and only if K is consistent.
In the following, we give the formal de�nitions of currently available approaches.

De�nition 1 ([Hunter and Konieczny, 2008]). The drastic inconsistency measure Id : K→ R∞≥0 is de�ned as

Id(K) =

{
1 if K |=⊥
0 otherwise

for K ∈ K.

A setM ⊆ K is calledminimal inconsistent subset (MI) ofK ifM |=⊥ and there is noM ′ ⊂M withM ′ |=⊥.
LetMI(K) be the set of allMIs of K.

De�nition 2 ([Hunter and Konieczny, 2008]). TheMI-inconsistency measure IMI : K→ R∞≥0 is de�ned as

IMI(K) = |MI(K)|

for K ∈ K.

De�nition 3 ([Hunter and Konieczny, 2008]). TheMIc-inconsistency measure IMIC : K→ R∞≥0 is de�ned as

IMIC(K) =
∑

M∈MI(K)

1

|M |

for K ∈ K.



For K ∈ K de�ne

MI(i)(K) = {M ∈ MI(K) | |M | = i}

CN(i)(K) = {C ⊆ K | |C| = i ∧ C 6|=⊥}

Ri(K) =

{
0 if |MI(i)(K)|+ |CN(i)(K)| = 0

|MI(i)(K)|/(|MI(i)(K)|+ |CN(i)(K)|) otherwise

for i = 1, . . . , |K|.

De�nition 4 ([Mu et al., 2011]). TheDf -inconsistency measure IDf
: K→ R∞≥0 is de�ned as

IDf
(K) = 1−Π

|K|
i=1(1−Ri(K)/i)

for K ∈ K.

De�nition 5 ([Grant and Hunter, 2011]). The problematic inconsistency measure Ip : K→ R∞≥0 is de�ned as

Ip(K) = |
⋃

M∈MI(K)

M |

for K ∈ K.

LetMC(K) be the set of maximal consistent subsets of K, i. e.

MC(K) = {K′ ⊆ K | K′ 6|=⊥ ∧∀K′′ ) K′ : K′′ |=⊥}

Furthermore, let SC(K) be the set of self-contradictory formulas of K, i. e.

SC(K) = {φ ∈ K | φ |=⊥}

De�nition 6 ([Grant and Hunter, 2011]). TheMC-inconsistency measure Imc : K→ R∞≥0 is de�ned as

Imc(K) = |MC(K)|+ |SC(K)| − 1

for K ∈ K.

De�nition 7 ([Doder et al., 2010]). The nc-inconsistency measure Inc : K→ R∞≥0 is de�ned as

Inc(K) = |K| −max{n | ∀K′ ⊆ K : |K′| = n⇒ K′ 6|=⊥}

for K ∈ K.

A probability function P on L(At) is a function P : Ω(At)→ [0, 1]with
∑
ω∈Ω(At) P (ω) = 1. We extend P to

assign a probability to any formula φ ∈ L(At) by de�ning

P (φ) =
∑
ω|=φ

P (ω)

Let P(At) be the set of all those probability functions.

De�nition 8 ([Knight, 2002]). The η-inconsistency measure Iη : K→ R∞≥0 is de�ned as

Iη(K) = 1−max{ξ | ∃P ∈ P(At) : ∀α ∈ K : P (α) ≥ ξ}

for K ∈ K.

A subsetH ⊆ Ω(At) is called a hitting set of K if for every φ ∈ K there is ω ∈ H with ω |= φ.

De�nition 9 ([Thimm, 2016]). The hitting-set inconsistency measure Ihs : K→ R∞≥0 is de�ned as

Ihs(K) = min{|H| | H is a hitting set of K} − 1

for K ∈ K with min ∅ =∞.



α β υ(α ∧ β) υ(α ∨ β) α υ(¬α)
T T T T T F
T B B T B B
T F F T F T
B T B T
B B B B
B F F B
F T F T
F B F B
F F F F

Table 1: Truth tables for propositional three-valued logic.

De�nition 10 ([Xiao and Ma, 2012]). Themv inconsistency measure Imv : K→ R∞≥0 is de�ned as

Imv(K) =
|
⋃
M∈MI(K) At(M)|
|At(K)|

for K ∈ K.

A three-valued interpretation υ onAt is a function υ : At→ {T, F,B}where the values T andF correspond
to the classical true and false, respectively. The additional truth value B stands for both and is meant to
represent a con�icting truth value for a proposition. The function υ is extended to arbitrary formulas as
shown in Table 1. Then, an interpretation υ satis�es a formula α, denoted by υ |=3 α if either υ(α) = T or
υ(α) = B. Then inconsistency can be measured by seeking an interpretation υ that assigns B to a minimal
number of propositions.

De�nition 11 ([Grant and Hunter, 2011]). The contension inconsistency measure Ic : K→ R∞≥0 is de�ned as

Ic(K) = min{|υ−1(B)| | υ |=3 K}

for K ∈ K.

An interpretation distance d is a function d : Ω(At)× Ω(At)→ [0,∞) that satis�es (let ω, ω′, ω′′ ∈ Ω(At))

1. d(ω, ω′) = 0 if and only if ω = ω′ (re�exivity),

2. d(ω, ω′) = d(ω′, ω) (symmetry), and

3. d(ω, ω′′) ≤ d(ω, ω′) + d(ω′, ω′′) (triangle inequality).

One prominent example of such a distance is the Dalal distance dd de�ned via

dd(ω, ω
′) = |{a ∈ At | ω(a) 6= ω′(a)}|

for all ω, ω′ ∈ Ω(At). IfX ⊆ Ω(At) is a set of interpretations we de�ne dd(X,ω) = minω′∈X dd(ω
′, ω) (ifX = ∅

we de�ne dd(X,ω) =∞).

De�nition 12 ([Grant and Hunter, 2013]). The Σ-distance inconsistency measure IΣ
dalal : K→ R∞≥0 is de�ned

as

IΣ
dalal(K) = min

{∑
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}

for K ∈ K.

De�nition 13 ([Grant and Hunter, 2013]). The max-distance inconsistency measure Imax
dalal : K → R∞≥0 is de-

�ned as

Imax
dalal(K) = min

{
max
α∈K

dd(Mod(α), ω) | ω ∈ Ω(At)

}
for K ∈ K.



De�nition 14 ([Grant and Hunter, 2013]). The hit-distance inconsistencymeasure Ihitdalal : K→ R∞≥0 is de�ned
as

Ihitdalal(K) = min {|{α ∈ K | dd(Mod(α), ω) > 0}| | ω ∈ Ω(At)}

for K ∈ K.

A minimal proof for α ∈ {x,¬x | x ∈ At} in K is a set π ⊆ K such that

1. α appears as a literal in π

2. π |= α, and

3. π is minimal wrt. set inclusion.

Let PKm(x) be the set of all minimal proofs of x in K.

De�nition 15 ([Jabbour and Raddaoui, 2013]). The proof-based inconsistency measure IPm
: K → R∞≥0 is

de�ned as

IPm
(K) =

∑
a∈At

|PKm(a)| · |PKm(¬a)|

for K ∈ K.

A set of maximal consistent subsets C ⊆ MC(K) is called anMC-cover if⋃
C∈C

C = K

AnMC-cover C is normal if no proper subset of C is anMC-cover. A normalMC-cover is maximal if

λ(C) = |
⋂
C∈C

C|

is maximal for all normalMC-covers.

De�nition 16 ([Ammoura et al., 2015]). The MCSC inconsistency measure Imcsc : K→ R∞≥0 is de�ned as

Imcsc(K) = |K| − λ(C)

for all K ∈ K and any maximalMC-cover C.

A set {K1, . . . ,Kn} of pairwise disjoint subsets of K is called a conditional independent MUS partition of
K, iff eachKi is inconsistent andMI(K1 ∪ . . .Kn) is the disjoint union of allMI(Ki).

De�nition 17 ([Jabbour et al., 2014]). The CC inconsistency measure ICC : K→ R∞≥0 is de�ned as

ICC(K) = max{n | {K1, . . . ,Kn} is a conditional independent MUS partition of K}

for all K ∈ K.

An ordered set P = {P1, . . . , Pn} with Pi ⊆ MI(K) for i = 1, . . . , n is called an ordered CSP-partition of
MI(K) if

1. MI(K) is the disjoint union of all Pi for i = 1, . . . , n

2. each Pi is a conditional independent MUS partition of K for i = 1, . . . , n

3. |Pi| ≥ |Pi+1| for i = 1, . . . , n− 1

De�nition 18 ([Jabbour et al., 2015]). The CSP inconsistency measure ICSP : K→ R∞≥0 is de�ned as

ICSP (K) = max{W(P) | P ∈ PMI(K)}

for all K ∈ K withW(P) =
∑n
i=1 wi|Pi| and {wn}∞n=1 is a decreasing positive sequence with w1 = 1.



In the above de�nition, we assume wi = 1/i �xed.
For a formula α let ‖α‖a denote the number of occurrences of the proposition a in α and α[a→ φ]i be the

same formula as α where the ith occurrence of the proposition a is replaced by φ (if a occurs less times we
de�ne α[a→ φ]i = α).

De�nition 19 ([Besnard, 2016]1). The forgetting-based inconsistency measure Iforget : K→ R∞≥0 is de�ned as

Iforget(K) =

{
0 if K is consistent
mina∈At,i=1,...,‖(

∧
K)‖a{Iforget((

∧
K)[a→ >]i), Iforget((

∧
K)[a→⊥]i)}+ 1 otherwise

for all K ∈ K.
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1Note that we give a slightly different but equivalent formalization.


