Uses of Interface
org.tweetyproject.machinelearning.rl.mdp.Policy
Package
Description
-
Uses of Policy in org.tweetyproject.machinelearning.rl.mdp
Modifier and TypeClassDescriptionclass
FixedPolicy<S extends State,
A extends Action> A fixed policy for MDPs, i.e., a simple map from states to actions.Modifier and TypeMethodDescriptiondouble
MarkovDecisionProcess.expectedUtility
(Policy<S, A> pi, int num_episodes, double gamma) Approximates the expected utility of the given policy within this MPD using Monte Carlo search (which uses the given number of episodes)Samples an episode wrt. -
Uses of Policy in org.tweetyproject.machinelearning.rl.mdp.algorithms
Modifier and TypeMethodDescriptionDetermines the best policy, given the utilitiesOfflineAlgorithm.getPolicy
(MarkovDecisionProcess<S, A> mdp, double gamma) Determines the optimal policy for the given MDP.PolicyIteration.getPolicy
(MarkovDecisionProcess<S, A> mdp, double gamma) ValueIteration.getPolicy
(MarkovDecisionProcess<S, A> mdp, double gamma) Modifier and TypeMethodDescriptionIterativePolicyEvaluation.getUtilities
(MarkovDecisionProcess<S, A> mdp, Policy<S, A> pi, double gamma) PolicyEvaluation.getUtilities
(MarkovDecisionProcess<S, A> mdp, Policy<S, A> pi, double gamma) Determines the utilities of the states in the MDP wrt.