Uses of Interface
org.tweetyproject.machinelearning.rl.mdp.State
Packages that use State
Package
Description
-
Uses of State in org.tweetyproject.machinelearning.rl.mdp
Classes in org.tweetyproject.machinelearning.rl.mdp with type parameters of type StateModifier and TypeClassDescriptionclassThis class models an episode in MPDs, i.e.classFixedPolicy<S extends State,A extends Action> A fixed policy for MDPs, i.e., a simple map from states to actions.classMarkovDecisionProcess<S extends State,A extends Action> This class models a Markov Decision Process (MDP, for fixed starting and terminal states), which can be used to represent reinforcement learning scenarios.interfaceA policy (map from states to actions) for Markov Decision ProcessClasses in org.tweetyproject.machinelearning.rl.mdp that implement StateModifier and TypeClassDescriptionclassA state in a Markov Decision Process that is solely characterized through its name. -
Uses of State in org.tweetyproject.machinelearning.rl.mdp.algorithms
Classes in org.tweetyproject.machinelearning.rl.mdp.algorithms with type parameters of type StateModifier and TypeClassDescriptionclassIterativePolicyEvaluation<S extends State,A extends Action> Determines utilities iteratively.classOfflineAlgorithm<S extends State,A extends Action> A general interface for algorithms to determine optimal policies directly from an MDPinterfacePolicyEvaluation<S extends State,A extends Action> The `PolicyEvaluation` interface provides methods to evaluate the utility of states in a Markov Decision Process (MDP) with respect to a given policy.classPolicyIteration<S extends State,A extends Action> The policy iteration algorithm for determining optimal policiesclassValueIteration<S extends State,A extends Action> The value iteration algorithm for determining optimal policies