Class CategorizerRankingReasoner
- java.lang.Object
-
- net.sf.tweety.arg.rankings.reasoner.AbstractRankingReasoner<NumericalArgumentRanking>
-
- net.sf.tweety.arg.rankings.reasoner.CategorizerRankingReasoner
-
- All Implemented Interfaces:
ModelProvider<Argument,DungTheory,NumericalArgumentRanking>,PostulateEvaluatable<Argument>
public class CategorizerRankingReasoner extends AbstractRankingReasoner<NumericalArgumentRanking>
This class implements the "h-categorizer" argument ranking approach that was originally proposed by [Besnard, Hunter. A logic-based theory of deductive arguments. 2001] for deductive logics. It uses the Fixed-point algorithm of [Pu, Zhang, Luo, Luo. Argument Ranking with Categoriser Function. KSEM 2014] which allows for cycles in argumentation graphs.- Author:
- Anna Gessler
- See Also:
HCategorizer
-
-
Constructor Summary
Constructors Constructor Description CategorizerRankingReasoner()
-
Method Summary
Modifier and Type Method Description private doublecalculateCategorizerFunction(double[] v_old, Matrix directAttackMatrix, int i)Computes the h-Categorizer function.private doublegetDistance(double[] v_old, double[] v)Computes the Euclidean distance between to the given arrays.NumericalArgumentRankinggetModel(DungTheory base)Returns a single (dedicated) model of the given belief base.java.util.Collection<NumericalArgumentRanking>getModels(DungTheory bbase)Returns a characterizing model of the given belief base
-
-
-
Method Detail
-
getModels
public java.util.Collection<NumericalArgumentRanking> getModels(DungTheory bbase)
Description copied from interface:ModelProviderReturns a characterizing model of the given belief base- Parameters:
bbase- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
public NumericalArgumentRanking getModel(DungTheory base)
Description copied from interface:ModelProviderReturns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
base- some belief base- Returns:
- a selected model of the belief base.
-
calculateCategorizerFunction
private double calculateCategorizerFunction(double[] v_old, Matrix directAttackMatrix, int i)Computes the h-Categorizer function.- Parameters:
v_old- array of double valuations that were computed in the previous iterationdirectAttackMatrix- complete matrix of direct attacksi- row of the attack matrix that will be used in the calculation- Returns:
- categorizer valuation
-
getDistance
private double getDistance(double[] v_old, double[] v)Computes the Euclidean distance between to the given arrays.- Parameters:
v_old- first arrayv- second array- Returns:
- distance between v and v_old
-
-