Package net.sf.tweety.arg.dung.divisions
Class Division
- java.lang.Object
-
- net.sf.tweety.commons.util.Pair<Extension,Extension>
-
- net.sf.tweety.arg.dung.divisions.Division
-
- All Implemented Interfaces:
java.io.Serializable
public class Division extends Pair<Extension,Extension>
A pair <P,V> is a division of AAF G w.r.t. semantics X iff there is an X-extension E such that P\subseteq E and E \cap V = {}, cf. [Hunter,Thimm,2014].- Author:
- Matthias Thimm
- See Also:
- Serialized Form
-
-
Method Summary
Modifier and Type Method Description java.util.Collection<DungTheory>
getDividers(DungTheory theory, Semantics semantics)
Returns the dividers for this division, i.e.static java.util.Collection<Division>
getDivisions(java.util.Collection<Extension> exts, DungTheory aaf)
Returns all divisions of all given extensions and the given aaf.static java.util.Collection<Division>
getDivisions(Extension ext, DungTheory aaf)
Returns all divisions of aaf that arise from the given extension.static java.util.Collection<Division>
getStandardDivisions(DungTheory theory)
Returns the standard set of divisions of the given argumentation theory, i.e.static boolean
isDisjoint(java.util.Collection<Division> divisions, DungTheory theory, Semantics semantics)
Checks whether the given set o divisions is disjoint wrt.static boolean
isExhaustive(java.util.Collection<Division> divisions, DungTheory theory, Semantics semantics)
Checks whether the given set of divisions is exhaustive wrt.boolean
isValid(java.util.Collection<Extension> exts)
Checks whether this division is valid wrt.boolean
isValid(Extension ext)
Checks whether this division is valid wrt.
-
-
-
Method Detail
-
isValid
public boolean isValid(java.util.Collection<Extension> exts)
Checks whether this division is valid wrt. some of the given extensions- Parameters:
exts
- a collection of extensions.- Returns:
- "true" if this division is valid.
-
isValid
public boolean isValid(Extension ext)
Checks whether this division is valid wrt. the given extension.- Parameters:
ext
- some extension- Returns:
- "true" iff this division is valid.
-
getDividers
public java.util.Collection<DungTheory> getDividers(DungTheory theory, Semantics semantics)
Returns the dividers for this division, i.e. all sub-theories of the given theory such that this division is in that sub-theories set of divisions.- Parameters:
theory
- some argumentation frameworksemantics
- some semantics- Returns:
- the set of dividers of this devision
-
getDivisions
public static java.util.Collection<Division> getDivisions(java.util.Collection<Extension> exts, DungTheory aaf)
Returns all divisions of all given extensions and the given aaf.- Parameters:
exts
- a collection of extensions.aaf
- a Dung theory- Returns:
- the set of divisions of all extensions returned by the given reasoner.
-
getDivisions
public static java.util.Collection<Division> getDivisions(Extension ext, DungTheory aaf)
Returns all divisions of aaf that arise from the given extension.- Parameters:
ext
- some extensionaaf
- some Dung theory- Returns:
- the set of divisions of aaf that arise from the given extension.
-
isExhaustive
public static boolean isExhaustive(java.util.Collection<Division> divisions, DungTheory theory, Semantics semantics)
Checks whether the given set of divisions is exhaustive wrt. the given theory.- Parameters:
divisions
- a set of divisions.theory
- some aaf.semantics
- some semantics- Returns:
- "true" if the given set of divisions is exhaustive.
-
isDisjoint
public static boolean isDisjoint(java.util.Collection<Division> divisions, DungTheory theory, Semantics semantics)
Checks whether the given set o divisions is disjoint wrt. the given theory.- Parameters:
divisions
- a set of divisionstheory
- some aafsemantics
- some semantics- Returns:
- "true" if the given set of divisions is disjoint.
-
getStandardDivisions
public static java.util.Collection<Division> getStandardDivisions(DungTheory theory)
Returns the standard set of divisions of the given argumentation theory, i.e. the set of all divisions of the form (A,Arg\A) where A\subseteq Arg and Arg is the set of arguments of the given theory.- Parameters:
theory
- some theory.- Returns:
- the standard set of divisions.
-
-