Interface MusEnumerator<S extends Formula>
-
- Type Parameters:
S
- the type of formulas
- All Superinterfaces:
BeliefSetConsistencyTester<S>
,ConsistencyTester<BeliefSet<S,?>>
- All Known Implementing Classes:
AbstractMusEnumerator
,MarcoMusEnumerator
,MimusMusEnumerator
,NaiveMusEnumerator
,PlMusEnumerator
public interface MusEnumerator<S extends Formula> extends BeliefSetConsistencyTester<S>
Interface for classes enumerating MUSes (minimal unsatisfiable sets) and MCSs (maximal consistent sets).- Author:
- Matthias Thimm
-
-
Method Summary
Modifier and Type Method Description java.util.Collection<java.util.Collection<S>>
getMiComponents(java.util.Collection<S> formulas)
Computes the maximal (wrt.boolean
isConsistent(java.util.Collection<S> formulas)
Checks whether the given collection of formulas is consistent.boolean
isConsistent(BeliefSet<S,?> beliefSet)
Checks whether the given belief base is consistent.boolean
isConsistent(S formula)
Checks whether the given formula is consistent.java.util.Collection<java.util.Collection<S>>
maximalConsistentSubsets(java.util.Collection<S> formulas)
This method returns the maximal consistent subsets of the given set of formulasjava.util.Set<java.util.Set<S>>
minimalCorrectionSubsets(java.util.Collection<S> formulas)
This method returns the minimal correction subsets of the given set of formulas (i.e.java.util.Collection<java.util.Collection<S>>
minimalInconsistentSubsets(java.util.Collection<S> formulas)
This method returns the minimal inconsistent subsets of the given set of formulas.
-
-
-
Method Detail
-
minimalInconsistentSubsets
java.util.Collection<java.util.Collection<S>> minimalInconsistentSubsets(java.util.Collection<S> formulas)
This method returns the minimal inconsistent subsets of the given set of formulas.- Parameters:
formulas
- a set of formulas.- Returns:
- the minimal inconsistent subsets of the given set of formulas
-
maximalConsistentSubsets
java.util.Collection<java.util.Collection<S>> maximalConsistentSubsets(java.util.Collection<S> formulas)
This method returns the maximal consistent subsets of the given set of formulas- Parameters:
formulas
- a set of formulas- Returns:
- the maximal consistent subsets of the given set of formulas.
-
minimalCorrectionSubsets
java.util.Set<java.util.Set<S>> minimalCorrectionSubsets(java.util.Collection<S> formulas)
This method returns the minimal correction subsets of the given set of formulas (i.e. the complements of maximal consistent subsets)- Parameters:
formulas
- a set of formulas- Returns:
- the minimal corrections subsets of the given set of formulas.
-
getMiComponents
java.util.Collection<java.util.Collection<S>> getMiComponents(java.util.Collection<S> formulas)
Computes the maximal (wrt. cardinality) partitioning {K1,...,Kn} of K (ie. K is a disjoint union of K1,...,Kn) such that MI(K) is a disjoint union of MI(K1),...,MI(Kn).- Parameters:
formulas
- a set of formulas K- Returns:
- the MI components of K
-
isConsistent
boolean isConsistent(BeliefSet<S,?> beliefSet)
Description copied from interface:ConsistencyTester
Checks whether the given belief base is consistent.- Specified by:
isConsistent
in interfaceBeliefSetConsistencyTester<S extends Formula>
- Specified by:
isConsistent
in interfaceConsistencyTester<S extends Formula>
- Parameters:
beliefSet
- a belief base.- Returns:
- "true" iff the given belief base is consistent.
-
isConsistent
boolean isConsistent(java.util.Collection<S> formulas)
Description copied from interface:BeliefSetConsistencyTester
Checks whether the given collection of formulas is consistent.- Specified by:
isConsistent
in interfaceBeliefSetConsistencyTester<S extends Formula>
- Parameters:
formulas
- a collection of formulas.- Returns:
- "true" iff the given collection of formulas is consistent.
-
isConsistent
boolean isConsistent(S formula)
Description copied from interface:BeliefSetConsistencyTester
Checks whether the given formula is consistent.- Specified by:
isConsistent
in interfaceBeliefSetConsistencyTester<S extends Formula>
- Parameters:
formula
- a formulas.- Returns:
- "true" iff the formula is consistent.
-
-