Class GridSearchParameterLearner<S extends Observation,​T extends Category>

  • Type Parameters:
    S - the type of observations.
    T - the type of categories.
    All Implemented Interfaces:
    Trainer<S,​T>

    public class GridSearchParameterLearner<S extends Observation,​T extends Category>
    extends ParameterTrainer<S,​T>
    A grid-search approach for learning parameters. For each parameter with I=[l,u] being the boundaries for the parameter value of a given trainer, I is divided into partitions number of partitions. For each partition of each parameter the border points are chosen and a new classifier is learned with given parameter combination. From all combinations the combination where the classifier performs best is chosen. If depth > 1, the process is iterated: after selecting the best interval combination of the parameters, these intervals are again divided and the process is repeated depth many times.
    Author:
    Matthias Thimm
    • Constructor Detail

      • GridSearchParameterLearner

        public GridSearchParameterLearner​(Trainer<S,​T> trainer,
                                          ClassificationTester<S,​T> tester,
                                          int depth,
                                          int partitions)
        Creates a new grid-search parameter learner with the given arguments.
        Parameters:
        trainer - some trainer.
        tester - some classification tester for measuring performance.
        depth - the depth of the recursion.
        partitions - the number of partitions.