Class IteratedGradedDefenseReasoner
java.lang.Object
org.tweetyproject.arg.rankings.reasoner.AbstractRankingReasoner<LatticePartialOrder<Argument,DungTheory>>
 
org.tweetyproject.arg.rankings.reasoner.IteratedGradedDefenseReasoner
- All Implemented Interfaces:
 ModelProvider<Argument,,DungTheory, LatticePartialOrder<Argument, DungTheory>> PostulateEvaluatable<Argument>
public class IteratedGradedDefenseReasoner
extends AbstractRankingReasoner<LatticePartialOrder<Argument,DungTheory>> 
This class implements the argument ranking approach of
 [Grossi, Modgil. On the Graded Acceptability of Arguments. IJCAI 2015]
 
 The used algorithms are simple brute force search algorithms.
- Author:
 - Matthias Thimm
 
- 
Constructor Summary
Constructors - 
Method Summary
Modifier and TypeMethodDescriptiongetAllMNCompleteExtensions(DungTheory theory, int m, int n) Returns all mn-complete extensions.getAllMNGroundedExtensions(DungTheory theory, int m, int n) Returns all mn-grounded extensions.getAllMNPreferredExtensions(DungTheory theory, int m, int n) Returns all mn-preferred extensions.getAllMStableExtensions(DungTheory theory, int m) Returns all m-stable extensions.getModel(DungTheory bbase) Returns a single (dedicated) model of the given belief base.getModels(DungTheory bbase) Returns a characterizing model of the given belief basegradedDefense(DungTheory theory, Collection<Argument> args, int m, int n) Implements the graded defense function from Def.gradedNeutrality(DungTheory theory, Collection<Argument> args, int m) Implements the graded neutrality function from Def.booleannatively installedbooleanisMConflictFree(DungTheory theory, Collection<Argument> args, int m) Checks whether the given set of arguments is m-conflict-free, cf.booleanisMNAdmissible(DungTheory theory, Collection<Argument> args, int m, int n) Checks whether the given set of arguments is mn-admissible, cf.booleanisMNComplete(DungTheory theory, Collection<Argument> args, int m, int n) Checks whether the given set of arguments is mn-complete, cf.booleanisMNGrounded(DungTheory theory, Collection<Argument> args, int m, int n) Checks whether the given set of arguments is mn-grounded, cf.booleanisMNPreferred(DungTheory theory, Collection<Argument> args, int m, int n) Checks whether the given set of arguments is mn-preferred, cf.booleanisMStable(DungTheory theory, Collection<Argument> args, int m) Checks whether the given set of arguments is m-stable, cf. 
- 
Constructor Details
- 
IteratedGradedDefenseReasoner
public IteratedGradedDefenseReasoner()Default Constructor 
 - 
 - 
Method Details
- 
gradedDefense
public Collection<Argument> gradedDefense(DungTheory theory, Collection<Argument> args, int m, int n) Implements the graded defense function from Def. 5, i.e. gradedDefense_m_n(X) = { x | there are not more than m different y s.t. y attacks x and there are not more than n different z s.t. z attacks y and z is in X}- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integer (indicating the number of attackers)n- some integer (indicating the number of attackers of attackers)- Returns:
 - the set of arguments mn-defended by the given set of arguments
 
 - 
gradedNeutrality
Implements the graded neutrality function from Def. 6, i.e. gradedNeutrality_m(X) = {x | there are less than m arguments y from X that attack x}- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integer (the number of attackers)- Returns:
 - the set of arguments m-neutral to args.
 
 - 
isMConflictFree
Checks whether the given set of arguments is m-conflict-free, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integer- Returns:
 - "true" iff args is m-conflict-free
 
 - 
isMNAdmissible
Checks whether the given set of arguments is mn-admissible, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integern- some integer- Returns:
 - "true" iff args is mn-admissible
 
 - 
isMNComplete
Checks whether the given set of arguments is mn-complete, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integern- some integer- Returns:
 - "true" iff args is mn-complete
 
 - 
isMStable
Checks whether the given set of arguments is m-stable, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integer- Returns:
 - "true" iff args is m-stable
 
 - 
isMNGrounded
Checks whether the given set of arguments is mn-grounded, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integern- some integer- Returns:
 - "true" iff args is mn-grounded
 
 - 
isMNPreferred
Checks whether the given set of arguments is mn-preferred, cf. Def. 9.- Parameters:
 theory- a Dung theoryargs- some set of argumentsm- some integern- some integer- Returns:
 - "true" iff args is mn-preferred
 
 - 
getAllMNCompleteExtensions
public Collection<Extension<DungTheory>> getAllMNCompleteExtensions(DungTheory theory, int m, int n) Returns all mn-complete extensions.- Parameters:
 theory- a Dung theorym- some integern- some integer- Returns:
 - all mn-complete extensions.
 
 - 
getAllMNPreferredExtensions
public Collection<Extension<DungTheory>> getAllMNPreferredExtensions(DungTheory theory, int m, int n) Returns all mn-preferred extensions.- Parameters:
 theory- a Dung theorym- some integern- some integer- Returns:
 - all mn-preferred extensions.
 
 - 
getAllMNGroundedExtensions
public Collection<Extension<DungTheory>> getAllMNGroundedExtensions(DungTheory theory, int m, int n) Returns all mn-grounded extensions.- Parameters:
 theory- a Dung theorym- some integern- some integer- Returns:
 - all mn-grounded extensions.
 
 - 
getAllMStableExtensions
Returns all m-stable extensions.- Parameters:
 theory- a Dung theorym- some integer- Returns:
 - all m-stable extensions.
 
 - 
getModels
Description copied from interface:ModelProviderReturns a characterizing model of the given belief base- Parameters:
 bbase- some belief base- Returns:
 - the (selected) models of the belief base
 
 - 
getModel
Description copied from interface:ModelProviderReturns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
 bbase- some belief base- Returns:
 - a selected model of the belief base.
 
 - 
isInstalled
public boolean isInstalled()natively installed- Specified by:
 isInstalledin classAbstractRankingReasoner<LatticePartialOrder<Argument,DungTheory>> - Returns:
 - is installed status
 
 
 -