Interface Postulate<S extends Formula>
- Type Parameters:
S- The type of formulas this postulate is about.
- All Known Implementing Classes:
AdmissibilityPrinciple,AllowingAbstentionPrinciple,CFReinstatementPrinciple,ConflictFreePrinciple,DefencePrinciple,DirectionalityPrinciple,ImAdjunctionInvariance,ImAttenuation,IMaximalityPrinciple,ImConsistency,ImContradiction,ImDominance,ImEqualConflict,ImExchange,ImFreeFormulaDilution,ImFreeFormulaIndependence,ImIrrelevanceOfSyntax,ImMINormalization,ImMISeparability,ImMonotony,ImNormalization,ImPenalty,ImPostulate,ImSafeFormulaIndependence,ImSuperAdditivity,ImWeakDominance,INRAPrinciple,ModularizationPrinciple,NaivetyPrinciple,NonInterferencePrinciple,Principle,RaAbstraction,RaAdditionOfAttackBranch,RaAdditionOfDefenseBranch,RaAttackVsFullDefense,RaCardinalityPrecedence,RaCounterTransitivity,RaDefensePrecedence,RaDistDefensePrecedence,RaIncreaseOfAttackBranch,RaIncreaseOfDefenseBranch,RaIndependence,RankingPostulate,RaNonAttackedEquivalence,RaQualityPrecedence,RaSelfContradiction,RaSigmaCompatibility,RaSkeptSigmaCompatibility,RaStrictAdditionOfDefenseBranch,RaStrictCounterTransitivity,RaTotal,RaVoidPrecedence,ReductAdmissibilityPrinciple,ReinstatementPrinciple,SccDecomposabilityPrinciple,SCOOCPrinciple,SemiDirectionalityPrinciple,SemiQualifiedAdmissibilityPrinciple,StrongAdmissibilityPrinciple,WeakDirectionalityPrinciple,WeakReinstatementPrinciple
public interface Postulate<S extends Formula>
Models a general (rationality) postulate, i.e. a property that
can be satisfied or violated by some approach. This class
contains methods for checking whether an approach satisfies
certain instances wrt. this postulate.
- Author:
- Matthias Thimm
-
Method Summary
Modifier and TypeMethodDescriptiongetName()The textual name of the postulatebooleanisApplicable(Collection<S> kb) Checks whether the given kb represents a non-trivial instance for this postulate, i.e., whether assumptions of this postulates are satisfied (evaluating an approach on a non-applicable instance always succeeds).booleanisSatisfied(Collection<S> kb, PostulateEvaluatable<S> ev) Checks whether this postulate is satisfied by the given approachevwrt.
-
Method Details
-
isApplicable
Checks whether the given kb represents a non-trivial instance for this postulate, i.e., whether assumptions of this postulates are satisfied (evaluating an approach on a non-applicable instance always succeeds).- Parameters:
kb- some knowledge base- Returns:
- true if the knowledge base is a non trivial instance of this postulate.
-
isSatisfied
Checks whether this postulate is satisfied by the given approachevwrt. the given instancekb(note that evaluating an approach on a non-applicable instance always succeeds).- Parameters:
kb- some knowledge baseev- some approach- Returns:
- true if the postulate is satisfied on the instance
-
getName
-