Class RandomSampler
java.lang.Object
org.tweetyproject.commons.BeliefSetSampler<PlFormula, PlBeliefSet>
org.tweetyproject.logics.pl.util.RandomSampler
- All Implemented Interfaces:
Iterator<PlBeliefSet>,BeliefSetIterator<PlFormula, PlBeliefSet>
This sampler generates random belief sets by selecting,
for each formula a random set of possible worlds as its models.
- Author:
- Matthias Thimm
-
Field Summary
Fields inherited from class org.tweetyproject.commons.BeliefSetSampler
DEFAULT_MAXIMUM_BELIEFBASE_LENGTH, DEFAULT_MINIMUM_BELIEFBASE_LENGTH -
Constructor Summary
ConstructorsConstructorDescriptionRandomSampler(Signature signature, double worldProb) Creates a new sampler for the given signatureRandomSampler(Signature signature, double worldProb, int minLength, int maxLength) Creates a new sampler for the given signature -
Method Summary
Methods inherited from class org.tweetyproject.commons.BeliefSetSampler
getMaxLength, getMinLength, getSamplerSignature, hasNextMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface java.util.Iterator
forEachRemaining, remove
-
Constructor Details
-
RandomSampler
Creates a new sampler for the given signature- Parameters:
signature- some signatureworldProb- Probability of selecting any world as a model of a formula
-
RandomSampler
Creates a new sampler for the given signature- Parameters:
signature- some signatureworldProb- Probability of selecting any world as a model of a formulaminLength- the minimum length of knowledge basesmaxLength- the maximum length of knowledge bases
-
-
Method Details
-
next
- Specified by:
nextin interfaceBeliefSetIterator<PlFormula, PlBeliefSet>- Specified by:
nextin interfaceIterator<PlBeliefSet>- Specified by:
nextin classBeliefSetSampler<PlFormula, PlBeliefSet>
-