Class WeaklyCompleteReasoner
java.lang.Object
org.tweetyproject.arg.dung.reasoner.AbstractDungReasoner
org.tweetyproject.arg.dung.reasoner.AbstractExtensionReasoner
org.tweetyproject.arg.dung.reasoner.WeaklyCompleteReasoner
- All Implemented Interfaces:
ModelProvider<Argument,
,DungTheory, Extension<DungTheory>> PostulateEvaluatable<Argument>
,QualitativeReasoner<DungTheory,
,Argument> Reasoner<Boolean,
DungTheory, Argument>
Reasoner for weakly complete semantics as described in:
see: Baumann, Brewka, Ulbricht: Revisiting the foundations of abstract argumentation-semantics based on weak admissibility and weak defense.
a set of arguments E is w-complete iff it is w-admissible and there exists no superset of E that is w-defended by E
- Author:
- Lars Bengel
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiongetModel
(DungTheory bbase) Returns a single (dedicated) model of the given belief base.getModels
(DungTheory bbase) Returns a characterizing model of the given belief baseboolean
isWeaklyDefendedBy
(Collection<Argument> X, Collection<Argument> E, DungTheory theory) Computes whether E w-defends X i.e.Methods inherited from class org.tweetyproject.arg.dung.reasoner.AbstractExtensionReasoner
getSimpleReasonerForSemantics, isInstalled, query, query
-
Constructor Details
-
WeaklyCompleteReasoner
public WeaklyCompleteReasoner()
-
-
Method Details
-
getModels
Description copied from interface:ModelProvider
Returns a characterizing model of the given belief base- Parameters:
bbase
- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
Description copied from interface:ModelProvider
Returns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
bbase
- some belief base- Returns:
- a selected model of the belief base.
-
isWeaklyDefendedBy
public boolean isWeaklyDefendedBy(Collection<Argument> X, Collection<Argument> E, DungTheory theory) Computes whether E w-defends X i.e. for every attacker y of X: 1. E attacks y or 2. y is not in any w-admissible set of the E-reduct of theory, y is not in E and there exists a superset of X that is w-admissible in theory- Parameters:
X
- a set of argumentsE
- a set of argumentstheory
- a dung theory- Returns:
- true, if E w-defends X
-