Uses of Interface
org.tweetyproject.math.norm.RealVectorNorm
Package
Description
-
Uses of RealVectorNorm in org.tweetyproject.arg.prob.analysis
ModifierConstructorDescriptionPAInconsistencyMeasure
(RealVectorNorm norm, DungTheory theory, PASemantics semantics) Creates a new inconsinstency measure which uses the given norm and measures wrt. -
Uses of RealVectorNorm in org.tweetyproject.arg.prob.dynamics
ModifierConstructorDescriptionAbstractPAChangeOperator
(PASemantics semantics, RealVectorNorm norm, SimpleRealValuedFunction f) Creates a new change operator for the given semantics that uses the specified norm for distance measuring and the given function for optimizing.PARevisionOperator
(PASemantics semantics, RealVectorNorm norm, SimpleRealValuedFunction f) Creates a new change operator for the given semantics that uses the specified norm for distance measuring and the given function for optimizing.PAUpdateOperator
(PASemantics semantics, RealVectorNorm norm, SimpleRealValuedFunction f) Creates a new change operator for the given semantics that uses the specified norm for distance measuring and the given function for optimizing. -
Uses of RealVectorNorm in org.tweetyproject.logics.mln.analysis
ModifierConstructorDescriptionAggregatingCoherenceMeasure
(RealVectorNorm norm, AggregationFunction aggregator) Constructor -
Uses of RealVectorNorm in org.tweetyproject.logics.pcl.analysis
ModifierConstructorDescriptionMinimalViolationInconsistencyMeasure
(RealVectorNorm norm, Solver solver) Creates a new measure the given normCreates a new machine shop for the norm -
Uses of RealVectorNorm in org.tweetyproject.math.norm
Modifier and TypeClassDescriptionclass
Abstract class for real vector norms.class
This norm uses an aggregator on the 1-norm distance of each value.class
EntropyNorm<T extends Comparable<T>>
The entropy norm.class
The Manhattan norm.class
The Maximum norm.class
The p-norm.class
This distance function uses an aggregator on a probabilistically normalized distance for probabilities of each value.class
This class implement the p-norm distance function where distances are normalized corresponding to their distance to 0.5.