Class NonInterferencePrinciple
java.lang.Object
org.tweetyproject.arg.dung.principles.Principle
org.tweetyproject.arg.dung.principles.DirectionalityPrinciple
org.tweetyproject.arg.dung.principles.NonInterferencePrinciple
Non-Interference Principle
A semantics satisfies non-interference iff for every isolated set 'U' in an abstract argumentation framework F it holds that: The extensions of F restricted to 'U' are equal to the extensions of F intersected with U
- Author:
- Julian Sander
- See Also:
-
Field Summary
Fields inherited from class org.tweetyproject.arg.dung.principles.Principle
ADMISSIBILITY, ALLOWING_ABSTENTION, CF_REINSTATEMENT, CONFLICT_FREE, DEFENCE, DIRECTIONALITY, I_MAXIMALITY, INRA, MODULARIZATION, NAIVETY, NON_INTERFERENCE, REDUCT_ADM, REINSTATEMENT, SCC_DECOMPOSABILITY, SCOOC, SEMI_DIRECTIONALITY, SEMIQUAL_ADM, STRONG_ADMISSIBILITY, WEAK_DIRECTIONALITY, WEAK_REINSTATEMENT
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiongetIsolatedSets
(DungTheory theory) Method for calculating isolated sets in a given theory
A set E is isolated in a theory AF iff there exists no argument a in {AF \ E}, with a attacks E and there exists no argument b in E, with b attacks {AF \ E}.getName()
The textual name of the postulateboolean
Computes whether the given extension reasoner (i.e.Methods inherited from class org.tweetyproject.arg.dung.principles.DirectionalityPrinciple
getUnattackedSets, isApplicable
Methods inherited from class org.tweetyproject.arg.dung.principles.Principle
isSatisfied
-
Constructor Details
-
NonInterferencePrinciple
public NonInterferencePrinciple()
-
-
Method Details
-
getName
-
isSatisfied
Description copied from class:Principle
Computes whether the given extension reasoner (i.e. semantics) satisfies this principle for this specific instance- Overrides:
isSatisfied
in classDirectionalityPrinciple
- Parameters:
kb
- some argumentation frameworkev
- an extension reasoner- Returns:
- true, if this principle is satisfied for this instance and semantics
-
getIsolatedSets
Method for calculating isolated sets in a given theory
A set E is isolated in a theory AF iff there exists no argument a in {AF \ E}, with a attacks E and there exists no argument b in E, with b attacks {AF \ E}.- Parameters:
theory
- An abstract argumentation framework- Returns:
- A set of isolated arguments in the specified framework.
-