Interface Postulate<S extends Formula>
- Type Parameters:
S
- The type of formulas this postulate is about.
- All Known Implementing Classes:
AdmissibilityPrinciple
,AllowingAbstentionPrinciple
,CFReinstatementPrinciple
,ConflictFreePrinciple
,DefencePrinciple
,DirectionalityPrinciple
,ImAdjunctionInvariance
,ImAttenuation
,IMaximalityPrinciple
,ImConsistency
,ImContradiction
,ImDominance
,ImEqualConflict
,ImExchange
,ImFreeFormulaDilution
,ImFreeFormulaIndependence
,ImIrrelevanceOfSyntax
,ImMINormalization
,ImMISeparability
,ImMonotony
,ImNormalization
,ImPenalty
,ImPostulate
,ImSafeFormulaIndependence
,ImSuperAdditivity
,ImWeakDominance
,INRAPrinciple
,ModularizationPrinciple
,NaivetyPrinciple
,NonInterferencePrinciple
,Principle
,RaAbstraction
,RaAdditionOfAttackBranch
,RaAdditionOfDefenseBranch
,RaAttackVsFullDefense
,RaCardinalityPrecedence
,RaCounterTransitivity
,RaDefensePrecedence
,RaDistDefensePrecedence
,RaIncreaseOfAttackBranch
,RaIncreaseOfDefenseBranch
,RaIndependence
,RankingPostulate
,RaNonAttackedEquivalence
,RaQualityPrecedence
,RaSelfContradiction
,RaStrictAdditionOfDefenseBranch
,RaStrictCounterTransitivity
,RaTotal
,RaVoidPrecedence
,ReductAdmissibilityPrinciple
,ReinstatementPrinciple
,SccDecomposabilityPrinciple
,SCOOCPrinciple
,SemiDirectionalityPrinciple
,SemiQualifiedAdmissibilityPrinciple
,StrongAdmissibilityPrinciple
,WeakDirectionalityPrinciple
,WeakReinstatementPrinciple
public interface Postulate<S extends Formula>
Models a general (rationality) postulate, i.e. a property that
can be satisfied or violated by some approach. This class
contains methods for checking whether an approach satisfies
certain instances wrt. this postulate.
- Author:
- Matthias Thimm
-
Method Summary
Modifier and TypeMethodDescriptiongetName()
The textual name of the postulateboolean
isApplicable
(Collection<S> kb) Checks whether the given kb represents a non-trivial instance for this postulate, i.e., whether assumptions of this postulates are satisfied (evaluating an approach on a non-applicable instance always succeeds).boolean
isSatisfied
(Collection<S> kb, PostulateEvaluatable<S> ev) Checks whether this postulate is satisfied by the given approachev
wrt.
-
Method Details
-
isApplicable
Checks whether the given kb represents a non-trivial instance for this postulate, i.e., whether assumptions of this postulates are satisfied (evaluating an approach on a non-applicable instance always succeeds).- Parameters:
kb
- some knowledge base- Returns:
- true if the knowledge base is a non trivial instance of this postulate.
-
isSatisfied
Checks whether this postulate is satisfied by the given approachev
wrt. the given instancekb
(note that evaluating an approach on a non-applicable instance always succeeds).- Parameters:
kb
- some knowledge baseev
- some approach- Returns:
- true if the postulate is satisfied on the instance
-
getName
-