Class CategorizerRankingReasoner
java.lang.Object
org.tweetyproject.arg.rankings.reasoner.AbstractRankingReasoner<NumericalPartialOrder<Argument,DungTheory>>
org.tweetyproject.arg.rankings.reasoner.CategorizerRankingReasoner
- All Implemented Interfaces:
ModelProvider<Argument,
,DungTheory, NumericalPartialOrder<Argument, DungTheory>> PostulateEvaluatable<Argument>
public class CategorizerRankingReasoner
extends AbstractRankingReasoner<NumericalPartialOrder<Argument,DungTheory>>
This class implements the "h-categorizer" argument ranking approach that was
originally proposed by [Besnard, Hunter. A logic-based theory of deductive arguments. 2001]
for deductive logics. It uses the Fixed-point algorithm of
[Pu, Zhang, Luo, Luo. Argument Ranking with Categoriser Function. KSEM 2014]
which allows for cycles in argumentation graphs.
- Author:
- Anna Gessler
- See Also:
-
Constructor Summary
ConstructorDescriptionCreate a new CountingRankingReasoner with default parameters.CategorizerRankingReasoner
(double epsilon) Create a new CategorizerRankingReasoner with the given parameters. -
Method Summary
Modifier and TypeMethodDescriptiongetModel
(DungTheory base) Returns a single (dedicated) model of the given belief base.getModels
(DungTheory bbase) Returns a characterizing model of the given belief baseboolean
natively installed
-
Constructor Details
-
CategorizerRankingReasoner
public CategorizerRankingReasoner()Create a new CountingRankingReasoner with default parameters. -
CategorizerRankingReasoner
public CategorizerRankingReasoner(double epsilon) Create a new CategorizerRankingReasoner with the given parameters.- Parameters:
epsilon
- TODO add description
-
-
Method Details
-
getModels
Description copied from interface:ModelProvider
Returns a characterizing model of the given belief base- Parameters:
bbase
- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
Description copied from interface:ModelProvider
Returns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
base
- some belief base- Returns:
- a selected model of the belief base.
-
isInstalled
public boolean isInstalled()natively installed- Specified by:
isInstalled
in classAbstractRankingReasoner<NumericalPartialOrder<Argument,
DungTheory>> - Returns:
- is installed status
-