Class PropagationRankingReasoner
java.lang.Object
org.tweetyproject.arg.rankings.reasoner.AbstractRankingReasoner<LatticePartialOrder<Argument,DungTheory>>
org.tweetyproject.arg.rankings.reasoner.PropagationRankingReasoner
- All Implemented Interfaces:
ModelProvider<Argument,
,DungTheory, LatticePartialOrder<Argument, DungTheory>> PostulateEvaluatable<Argument>
public class PropagationRankingReasoner
extends AbstractRankingReasoner<LatticePartialOrder<Argument,DungTheory>>
This class implements the argument ranking approach of [Delobelle. Ranking-
based Semantics for Abstract Argumentation. Thesis, 2017].
In this approach, initial values are assigned to arguments and then
propagated into the graph. The paper describes three different ways of
computing a ranking out of the propagation vector.
Note: This implementation only works for acyclic argument graphs. For cyclic graphs null is returned.
Note: This implementation only works for acyclic argument graphs. For cyclic graphs null is returned.
- Author:
- Anna Gessler
-
Nested Class Summary
Modifier and TypeClassDescriptionstatic enum
The three propagation semantics: PROPAGATION1 ("Propa_epsilon") PROPAGATION2 ("Propa_{1+epsilon}") PROPAGATION3 ("Propa_{1->epsilon}") -
Constructor Summary
ConstructorDescriptionPropagationRankingReasoner
(boolean useMultiset) Creates a new PropagationRankingReasoner with the given parameters.PropagationRankingReasoner
(double attackedArgumentsInfluence, boolean useMultiset, PropagationRankingReasoner.PropagationSemantics semantics) Creates a new PropagationRankingReasoner with the given parameters. -
Method Summary
Modifier and TypeMethodDescriptiongetModel
(DungTheory kb) Returns a single (dedicated) model of the given belief base.getModels
(DungTheory bbase) Returns a characterizing model of the given belief baseboolean
natively installed
-
Constructor Details
-
PropagationRankingReasoner
public PropagationRankingReasoner(boolean useMultiset) Creates a new PropagationRankingReasoner with the given parameters.- Parameters:
useMultiset
- determines whether the multiset (M) of attackers/defenders of length is used instead of the set (S)
-
PropagationRankingReasoner
public PropagationRankingReasoner(double attackedArgumentsInfluence, boolean useMultiset, PropagationRankingReasoner.PropagationSemantics semantics) Creates a new PropagationRankingReasoner with the given parameters.- Parameters:
attackedArgumentsInfluence
- the smaller this value is, the more important is the influence of the non-attacked arguments.useMultiset
- determines whether the multiset (M) of attackers/defenders of length is used instead of the set (S)semantics
- one of the three propagation semantics
-
-
Method Details
-
getModels
Description copied from interface:ModelProvider
Returns a characterizing model of the given belief base- Parameters:
bbase
- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
Description copied from interface:ModelProvider
Returns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
kb
- some belief base- Returns:
- a selected model of the belief base.
-
isInstalled
public boolean isInstalled()natively installed- Specified by:
isInstalled
in classAbstractRankingReasoner<LatticePartialOrder<Argument,
DungTheory>> - Returns:
- is installed status
-