Class StrategyBasedRankingReasoner
java.lang.Object
org.tweetyproject.arg.rankings.reasoner.AbstractRankingReasoner<NumericalPartialOrder<Argument,DungTheory>>
org.tweetyproject.arg.rankings.reasoner.StrategyBasedRankingReasoner
- All Implemented Interfaces:
ModelProvider<Argument,
,DungTheory, NumericalPartialOrder<Argument, DungTheory>> PostulateEvaluatable<Argument>
public class StrategyBasedRankingReasoner
extends AbstractRankingReasoner<NumericalPartialOrder<Argument,DungTheory>>
This class implements the argument ranking approach of [Matt, Toni. A
game-theoretic measure of argument strength for abstract argumentation. JELIA
2008]. In this approach, the strength of an argument is computed using a
two-person zero-sum strategic game in which the strategies of players are
sets of arguments.
- Author:
- Anna Gessler
-
Constructor Summary
-
Method Summary
Modifier and TypeMethodDescriptiondouble
Computes the degree of acceptability of the strategy A wrt.double
computeRewards
(Collection<Argument> A, Collection<Argument> B, DungTheory kb) Computes the rewards of the given strategy (set of arguments).double
computeStrengthOfArgument
(Argument a, DungTheory kb, Set<Set<Argument>> subsets) Computes the value of the zero-sum game for the given argument.getModel
(DungTheory kb) Returns a single (dedicated) model of the given belief base.getModels
(DungTheory bbase) Returns a characterizing model of the given belief baseboolean
natively installed
-
Constructor Details
-
StrategyBasedRankingReasoner
public StrategyBasedRankingReasoner()Default Constructor
-
-
Method Details
-
getModels
Description copied from interface:ModelProvider
Returns a characterizing model of the given belief base- Parameters:
bbase
- some belief base- Returns:
- the (selected) models of the belief base
-
getModel
Description copied from interface:ModelProvider
Returns a single (dedicated) model of the given belief base. If the implemented method allows for more than one dedicated model, the selection may be non-deterministic.- Parameters:
kb
- some belief base- Returns:
- a selected model of the belief base.
-
computeStrengthOfArgument
Computes the value of the zero-sum game for the given argument.- Parameters:
a
- an Argumentkb
- DungTheorysubsets
- all subsets of the knowledge base- Returns:
- strength value of the given argument
-
computeRewards
Computes the rewards of the given strategy (set of arguments).- Parameters:
A
- set of argumentsB
- set of argumentskb
- knowledge base containing the relations between A and B- Returns:
- rewards of A
-
computeDegreeOfAcceptability
public double computeDegreeOfAcceptability(Collection<Argument> A, Collection<Argument> B, DungTheory kb) Computes the degree of acceptability of the strategy A wrt. strategy B.- Parameters:
A
- set of argumentsB
- set of argumentskb
- knowledge base containing the relations between A and B- Returns:
- degree of acceptability of A wrt. B.
-
isInstalled
public boolean isInstalled()natively installed- Specified by:
isInstalled
in classAbstractRankingReasoner<NumericalPartialOrder<Argument,
DungTheory>> - Returns:
- is installed status
-